我们解决了在线顺序决策的问题,即在利用当前知识以最大程度地提高绩效和探索新信息以使用多武器的强盗框架获得长期利益之间的权衡平衡。汤普森采样是选择解决这一探索探索困境的动作的启发式方法之一。我们首先提出了一个通用框架,该框架可帮助启发性地调整汤普森采样中的探索与剥削权衡取舍,并使用后部分布中的多个样本进行调整。利用此框架,我们为多臂匪徒问题提出了两种算法,并为累积遗憾提供了理论界限。接下来,我们证明了拟议算法对汤普森采样的累积遗憾表现的经验改善。我们还显示了所提出的算法在现实世界数据集上的有效性。与现有方法相反,我们的框架提供了一种机制,可以根据手头的任务改变探索/开发量。为此,我们将框架扩展到两个其他问题,即,在土匪中最佳的ARM识别和时间敏感学习,并将我们的算法与现有方法进行比较。
translated by 谷歌翻译
The multi-armed bandit problem is a popular model for studying exploration/exploitation trade-off in sequential decision problems. Many algorithms are now available for this well-studied problem. One of the earliest algorithms, given by W. R. Thompson, dates back to 1933. This algorithm, referred to as Thompson Sampling, is a natural Bayesian algorithm. The basic idea is to choose an arm to play according to its probability of being the best arm. Thompson Sampling algorithm has experimentally been shown to be close to optimal. In addition, it is efficient to implement and exhibits several desirable properties such as small regret for delayed feedback. However, theoretical understanding of this algorithm was quite limited. In this paper, for the first time, we show that Thompson Sampling algorithm achieves logarithmic expected regret for the stochastic multi-armed bandit problem. More precisely, for the stochastic two-armed bandit problem, the expected regret in time T is O( ln T ∆ + 1 ∆ 3 ). And, for the stochastic N -armed bandit problem, the expected regret in time) 2 ln T ). Our bounds are optimal but for the dependence on ∆i and the constant factors in big-Oh.
translated by 谷歌翻译
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical performance compared to the stateof-the-art methods. However, many questions regarding its theoretical performance remained open. In this paper, we design and analyze a generalization of Thompson Sampling algorithm for the stochastic contextual multi-armed bandit problem with linear payoff functions, when the contexts are provided by an adaptive adversary. This is among the most important and widely studied version of the contextual bandits problem. We provide the first theoretical guarantees for the contextual version of Thompson Sampling. We prove a high probability regret bound of Õ(d 3/2 √ T ) (or Õ(d T log(N ))), which is the best regret bound achieved by any computationally efficient algorithm for this problem, and is within a factor of √ d (or log(N )) of the information-theoretic lower bound for this problem.
translated by 谷歌翻译
在本文中,我们考虑了在规避风险的标准下线性收益的上下文多臂强盗问题。在每个回合中,每个手臂都会揭示上下文,决策者选择一只手臂拉动并获得相应的奖励。特别是,我们将均值变化视为风险标准,最好的组是具有最大均值奖励的均值。我们将汤普森采样算法应用于脱节模型,并为提出算法的变体提供全面的遗憾分析。对于$ t $ rounds,$ k $ Actions和$ d $ - 维功能向量,我们证明了$ o((1+ \ rho+\ frac {1} {1} {\ rho}){\ rho})d \ ln t \ ln t \ ln的遗憾。 \ frac {k} {\ delta} \ sqrt {d k t^{1+2 \ epsilon} \ ln \ frac {k} {\ delta} \ frac {1} {\ epsilon}} $ 1 - \ \ delta $在带有风险公差$ \ rho $的均值方差标准下,对于任何$ 0 <\ epsilon <\ frac {1} {2} $,$ 0 <\ delta <1 $。我们提出的算法的经验性能通过投资组合选择问题来证明。
translated by 谷歌翻译
我们考虑激励探索:一种多臂匪徒的版本,其中武器的选择由自私者控制,而算法只能发布建议。该算法控制信息流,信息不对称可以激励代理探索。先前的工作达到了最佳的遗憾率,直到乘法因素,这些因素根据贝叶斯先验而变得很大,并在武器数量上成倍规模扩展。采样每只手臂的一个更基本的问题一旦遇到了类似的因素。我们专注于激励措施的价格:出于激励兼容的目的,绩效的损失,广泛解释为。我们证明,如果用足够多的数据点初始化,则标准的匪徒汤普森采样是激励兼容的。因此,当收集这些数据点时,由于激励措施的绩效损失仅限于初始回合。这个问题主要降低到样本复杂性的问题:需要多少个回合?我们解决了这个问题,提供了匹配的上限和下限,并在各种推论中实例化。通常,最佳样品复杂性在“信念强度”中的武器数量和指数中是多项式。
translated by 谷歌翻译
在本文中,我们研究了汤普森采样(TS)方法的应用到随机组合多臂匪徒(CMAB)框架中。当所有基本臂的结果分布都是独立的,并获得$ o(m \ log k _ {\ max} \ log t / \ delta_时,我们首先分析一般CMAB模型的标准TS算法。 {\ min})$,其中$ m $是基本武器的数量,$ k _ {\ max} $是最大的超级臂的大小,$ t $是时间范围,而$ \ delta _ {\ min} $是最佳解决方案的预期奖励与任何非最佳解决方案之间的最小差距。这种遗憾的上限比$ o(m(\ log k _ {\ max})^2 \ log t / \ delta _ {\ min})$更好。此外,我们的新颖分析技术可以帮助收紧其他基于UCB的政策(例如ESC)的遗憾界限,因为我们改善了计算累积遗憾的方法。然后,我们考虑Matroid Bandit设置(CMAB模型的特殊类别),在这里我们可以删除跨武器的独立性假设,并实现与下限匹配的遗憾上限。除了遗憾的上限外,我们还指出,一个人不能直接替换确切的离线甲骨文(将离线问题实例的参数作为输入,并在此实例下输出确切的最佳操作),用TS算法中的近似oracle替换了ts算法的近似值。甚至经典的mAb问题。最后,我们使用一些实验来显示TS遗憾与其他现有算法之间的比较,实验结果表明TS优于现有基准。
translated by 谷歌翻译
我们研究汤普森采样(TS)算法的遗憾,指数为家庭土匪,其中奖励分配来自一个一维指数式家庭,该家庭涵盖了许多常见的奖励分布,包括伯努利,高斯,伽玛,伽玛,指数等。我们建议汤普森采样算法,称为expts,它使用新颖的采样分布来避免估计最佳臂。我们为expts提供了严格的遗憾分析,同时产生有限的遗憾和渐近遗憾。特别是,对于带指数级家庭奖励的$ k $臂匪徒,expts of horizo​​n $ t $ sub-ucb(对于有限的时间遗憾的是问题依赖的有限时间标准) $ \ sqrt {\ log k} $,并且对于指数家庭奖励,渐近最佳。此外,我们通过在Expts中使用的采样分配外添加一个贪婪的剥削步骤,提出$^+$,以避免过度估计亚最佳武器。 expts $^+$是随时随地的强盗算法,可用于指数级的家庭奖励分布同时实现最小值和渐近最优性。我们的证明技术在概念上很简单,可以轻松地应用于用特定奖励分布分析标准的汤普森抽样。
translated by 谷歌翻译
节能导航构成了电动汽车的一个重要挑战,因为其有限的电池容量。我们采用贝叶斯方法在用于高效的导航路段的能耗模型。为了学习模型参数,我们开发了一个在线学习框架,并研究了几种勘探战略,如汤普森采样和上界的信心。然后,我们我们的在线学习框架扩展到多代理设置,其中多个车辆自适应导航和学习的能量模型的参数。我们分析汤普森采样和它在单剂和多代理设置性能建立严格的遗憾界限,通过下成批反馈算法的分析。最后,我们证明我们的方法通过实验,在几个真实世界的城市道路网络的性能。
translated by 谷歌翻译
我们将一般的多军匪徒问题视为一个相关(和简单的上下文和不安)元素,是一个放松的控制问题。通过引入熵正则化,我们获得了对值函数的平滑渐近近似。这产生了最佳决策过程的新型半指数近似。该半指数可以被解释为明确平衡探索 - 探索 - 探索权衡取舍,就像乐观的(UCB)原则中,学习溢价明确描述了环境中可用的信息的不对称性和奖励功能中的非线性。所得的渐近随机对照(ARC)算法的性能与其他相关的多臂匪徒的方法相比有利。
translated by 谷歌翻译
我们针对随机的多臂强盗及其具有线性预期奖励的上下文变体提出了基于多级汤普森采样方案的算法,在群集聚类的情况下。我们在理论上和经验上都表明,与使用标准汤普森采样相比,利用给定的集群结构如何显着改善遗憾和计算成本。在随机多军匪徒的情况下,我们对预期的累积后悔给出了上限,表明它如何取决于聚类的质量。最后,我们执行了经验评估,表明我们的算法与先前提出的具有聚集臂的匪徒相比表现良好。
translated by 谷歌翻译
我们研究了在线多任务学习的问题,其中在相似但不一定相同的多臂强盗环境中执行任务。特别是,我们研究学习者如何通过知识转移来改善多个相关任务的整体绩效。虽然最近已证明,在所有任务同时解决的环境中,尚不清楚汤普森采样(TS)算法是否尚不清楚,虽然最近证明了基于上限的算法(UCB)算法几乎达到了最佳的性能保证,具有类似的理论属性。在这项工作中,我们为更通用的在线多任务学习协议提供了TS-Type算法,该协议扩展了并发设置。我们提供了其频繁的分析,并证明它在随机停止时间内使用新型浓度不平等的多任务数据聚集也几乎是最佳的。最后,我们评估了关于合成数据的算法,并表明与基于UCB的算法相比,TS-Type算法具有出色的经验性能和基线算法,该算法在没有转移的情况下为每个单独的任务执行TS。
translated by 谷歌翻译
在本文中,我们通过提取最小半径路径研究网络中的瓶颈标识。许多现实世界网络具有随机重量,用于预先提供全面知识。因此,我们将此任务塑造为组合半发布会问题,我们应用了汤普森采样的组合版本,并在相应的贝叶斯遗憾地建立了上限。由于该问题的计算诡计,我们设计了一种替代问题,其近似于原始目标。最后,我们通过对现实世界指导和无向网络的近似配方进行了实验评估了汤普森抽样的性能。
translated by 谷歌翻译
We consider the classic online learning and stochastic multi-armed bandit (MAB) problems, when at each step, the online policy can probe and find out which of a small number ($k$) of choices has better reward (or loss) before making its choice. In this model, we derive algorithms whose regret bounds have exponentially better dependence on the time horizon compared to the classic regret bounds. In particular, we show that probing with $k=2$ suffices to achieve time-independent regret bounds for online linear and convex optimization. The same number of probes improve the regret bound of stochastic MAB with independent arms from $O(\sqrt{nT})$ to $O(n^2 \log T)$, where $n$ is the number of arms and $T$ is the horizon length. For stochastic MAB, we also consider a stronger model where a probe reveals the reward values of the probed arms, and show that in this case, $k=3$ probes suffice to achieve parameter-independent constant regret, $O(n^2)$. Such regret bounds cannot be achieved even with full feedback after the play, showcasing the power of limited ``advice'' via probing before making the play. We also present extensions to the setting where the hints can be imperfect, and to the case of stochastic MAB where the rewards of the arms can be correlated.
translated by 谷歌翻译
我们考虑随机多武装强盗(MAB)问题,延迟影响了行动。在我们的环境中,过去采取的行动在随后的未来影响了ARM奖励。在现实世界中,行动的这种延迟影响是普遍的。例如,为某个社会群体中的人员偿还贷款的能力可能历史上历史上批准贷款申请的频率频率。如果银行将贷款申请拒绝拒绝弱势群体,则可以创建反馈循环,进一步损害该群体中获取贷款的机会。在本文中,我们制定了在多武装匪徒的背景下的行动延迟和长期影响。由于在学习期间,我们将强盗设置概括为对这种“偏置”的依赖性进行编码。目标是随着时间的推移最大化收集的公用事业,同时考虑到历史行动延迟影响所产生的动态。我们提出了一种算法,实现了$ \ tilde {\ mathcal {o}}的遗憾,并显示$ \ omega(kt ^ {2/3})$的匹配遗憾下限,其中$ k $是武器数量,$ t $是学习地平线。我们的结果通过添加技术来补充强盗文献,以处理具有长期影响的行动,并对设计公平算法有影响。
translated by 谷歌翻译
Thompson sampling has proven effective across a wide range of stationary bandit environments. However, as we demonstrate in this paper, it can perform poorly when applied to nonstationary environments. We show that such failures are attributed to the fact that, when exploring, the algorithm does not differentiate actions based on how quickly the information acquired loses its usefulness due to nonstationarity. Building upon this insight, we propose predictive sampling, which extends Thompson sampling to do this. We establish a Bayesian regret bound and establish that, in nonstationary bandit environments, the regret incurred by Thompson sampling can far exceed that of predictive sampling. We also present implementations of predictive sampling that scale to complex bandit environments of practical interest in a computationally tractable manner. Through simulations, we demonstrate that predictive sampling outperforms Thompson sampling and other state-of-the-art algorithms across a wide range of nonstationary bandit environments.
translated by 谷歌翻译
我们考虑扩展到不可焦躁的多武装强盗(RMAB)问题,具有未知的ARM动态,其中一个未知的外源性Markov过程管理每只臂的卷发布分布。在每个全球状态下,每个手臂的奖励过程根据一个未知的马尔科维亚规则而发展,不同武器之间是非相同的。每次,玩家都选择了一个美元武器的手臂播放,并从有限一套奖励国家接收随机奖励。无论球员的行为如何,武器都不令人焦躁不安,即他们的当地状态。最近关于相关RMAB设置的研究,遗憾被定义为关于了解问题动态的玩家的奖励损失,每次都在每次都可以最大化预期立即值的ARM。目标是制定一个最小化遗憾的武装选择政策。为此,我们在外源马尔可夫过程(LEMP)算法下发展学习。我们理论上分析LEMP并建立遗憾的有限样本。我们表明LEMP与时间达到了对数遗憾的顺序。我们进一步分析了数控LEMP,并存在支持理论发现的仿真结果,并证明LEMP显着优于替代算法。
translated by 谷歌翻译
我们在这里采用贝叶斯非参数混合模型,以将多臂匪徒扩展到尤其是汤普森采样,以扩展到存在奖励模型不确定性的场景。在随机的多臂强盗中,播放臂的奖励是由未知分布产生的。奖励不确定性,即缺乏有关奖励生成分布的知识,引起了探索 - 开发权的权衡:强盗代理需要同时了解奖励分布的属性,并顺序决定下一步要采取哪种操作。在这项工作中,我们通过采用贝叶斯非参数高斯混合模型来进行奖励模型不确定性,将汤普森的抽样扩展到场景中,以进行灵活的奖励密度估计。提出的贝叶斯非参数混合物模型汤普森采样依次学习了奖励模型,该模型最能近似于真实但未知的每臂奖励分布,从而实现了成功的遗憾表现。我们基于基于后验分析的新颖的分析得出的,这是一种针对该方法的渐近遗憾。此外,我们从经验上评估了其在多样化和以前难以捉摸的匪徒环境中的性能,例如,在指数级的家族中,奖励不受异常值和不同的每臂奖励分布。我们表明,拟议的贝叶斯非参数汤普森取样优于表现,无论是平均累积的遗憾和遗憾的波动,最先进的替代方案。在存在强盗奖励模型不确定性的情况下,提出的方法很有价值,因为它避免了严格的逐案模型设计选择,但提供了重要的遗憾。
translated by 谷歌翻译
大多数在线平台都在努力从与用户的互动中学习,许多人从事探索:为了获取新信息而做出潜在的次优选择。我们研究探索与竞争之间的相互作用:这样的平台如何平衡学习探索和用户的竞争。在这里,用户扮演三个不同的角色:他们是产生收入的客户,他们是学习的数据来源,并且是自私的代理商,可以在竞争平台中进行选择。我们考虑了一种风格化的双重垄断模型,其中两家公司面临着相同的多军强盗问题。用户一一到达,并在两家公司之间进行选择,因此,只有在选择它的情况下,每个公司都在其强盗问题上取得进展。通过理论结果和数值模拟的混合,我们研究了竞争是否会激发更好的Bandit算法的采用,以及它是否导致用户增加福利。我们发现,Stark竞争会导致公司致力于导致低福利的“贪婪”强盗算法。但是,通过向公司提供一些“免费”用户来激励更好的探索策略并增加福利来削弱竞争。我们调查了削弱竞争的两个渠道:放松用户的理性并为一家公司带来首次推广优势。我们的发现与“竞争与创新”关系密切相关,并阐明了数字经济中的第一步优势。
translated by 谷歌翻译
Evaluating the performance of an ongoing policy plays a vital role in many areas such as medicine and economics, to provide crucial instruction on the early-stop of the online experiment and timely feedback from the environment. Policy evaluation in online learning thus attracts increasing attention by inferring the mean outcome of the optimal policy (i.e., the value) in real-time. Yet, such a problem is particularly challenging due to the dependent data generated in the online environment, the unknown optimal policy, and the complex exploration and exploitation trade-off in the adaptive experiment. In this paper, we aim to overcome these difficulties in policy evaluation for online learning. We explicitly derive the probability of exploration that quantifies the probability of exploring the non-optimal actions under commonly used bandit algorithms. We use this probability to conduct valid inference on the online conditional mean estimator under each action and develop the doubly robust interval estimation (DREAM) method to infer the value under the estimated optimal policy in online learning. The proposed value estimator provides double protection on the consistency and is asymptotically normal with a Wald-type confidence interval provided. Extensive simulations and real data applications are conducted to demonstrate the empirical validity of the proposed DREAM method.
translated by 谷歌翻译
现有的组合纯探索方法主要集中在UCB方法上。为了提高算法,他们通常使用ARM SET $ S $内的上限限制的总和来表示$ S $的上限限制,这可能比$ S $的紧密上限限制大得多,并导致由于$ S $中不同武器的经验手段是独立的,因此复杂性要比必要的要高得多。为了应对这一挑战,我们探索了使用独立的随机样品而不是上限置信边界的汤普森采样(TS)的想法,并为(组合)纯探索设计了第一个基于TS的算法TS-TS-explore。在TS-explore中,ARM集合$ S $中的独立随机样品的总和不会超过具有高概率的$ S $的紧密上限限制。因此,它解决了上述挑战,并且比一般组合纯探索中现有的基于UCB的算法的复杂性更高。至于对经典多臂强盗的纯粹探索,我们表明TS-explore实现了渐近最佳的复杂性上限。
translated by 谷歌翻译