变形量子电路用于量子机器学习和变分量子仿真任务。设计良好的变形电路或预测对给定学习或优化任务的表现如何尚不清楚。在这里,我们讨论了这些问题,使用神经切线内核理论分析变分量子电路。我们定义了量子神经切线内核,并在优化和学习任务中获得了相关损失函数的动态方程。我们分析了冻结极限或懒惰训练制度的动态,其中变分角缓慢变化,线性扰动足够好。我们将分析扩展到动态设置,包括变分角的二次校正。然后,我们考虑混合量子古典架构并定义混合核的大宽度限制,表明混合量子 - 经典神经网络可以大致高斯。这里提出的结果显示了用于量子机器学习和优化问题的变分量子电路的训练动态的分析谅解的限制。这些分析结果得到了量子机器学习实验的数值模拟支持。
translated by 谷歌翻译
我们定义\ emph {laziness}来描述对经典或量子的神经网络变异参数更新的大量抑制。在量子情况下,在随机变分量子电路的量子数中,抑制是指数的。我们讨论了量子机器在梯度下降期间,量子物理学家在\ cite {mcclean2018barren}中创建的量子机学习中的懒惰和\ emph {贫瘠的高原}之间的差异。根据神经切线核的理论,我们解决了对这两种现象的新理论理解。对于无噪声量子电路,如果没有测量噪声,则在过份术的状态下,损耗函数景观是复杂的,具有大量可训练的变异角度。取而代之的是,在优化的随机起点周围,有大量的局部最小值足够好,并且可以最大程度地减少我们仍然具有量子懒惰的均方根损耗函数,但是我们没有贫瘠的高原。但是,在有限的迭代次数中看不到复杂的景观,量子控制和量子传感的精度较低。此外,我们通过假设直观的噪声模型来查看在优化过程中噪声的效果,并表明变异量子算法在过覆盖化方案中是噪声弹性的。我们的工作精确地重新制定了量子贫瘠的高原声明,以对精确声明进行了合理的合理性,并在某些噪声模型中为陈述提供了正当的辩护,将新希望注入了近期变异量子算法,并为经典的机器学习提供了理论上的联系。我们的论文提供了有关量子贫瘠的高原的概念观点,以及关于\ cite {gater}中梯度下降动力学的讨论。
translated by 谷歌翻译
Quantum machine learning is a rapidly evolving field of research that could facilitate important applications for quantum computing and also significantly impact data-driven sciences. In our work, based on various arguments from complexity theory and physics, we demonstrate that a single Kerr mode can provide some "quantum enhancements" when dealing with kernel-based methods. Using kernel properties, neural tangent kernel theory, first-order perturbation theory of the Kerr non-linearity, and non-perturbative numerical simulations, we show that quantum enhancements could happen in terms of convergence time and generalization error. Furthermore, we make explicit indications on how higher-dimensional input data could be considered. Finally, we propose an experimental protocol, that we call \emph{quantum Kerr learning}, based on circuit QED.
translated by 谷歌翻译
Quantum-enhanced data science, also known as quantum machine learning (QML), is of growing interest as an application of near-term quantum computers. Variational QML algorithms have the potential to solve practical problems on real hardware, particularly when involving quantum data. However, training these algorithms can be challenging and calls for tailored optimization procedures. Specifically, QML applications can require a large shot-count overhead due to the large datasets involved. In this work, we advocate for simultaneous random sampling over both the dataset as well as the measurement operators that define the loss function. We consider a highly general loss function that encompasses many QML applications, and we show how to construct an unbiased estimator of its gradient. This allows us to propose a shot-frugal gradient descent optimizer called Refoqus (REsource Frugal Optimizer for QUantum Stochastic gradient descent). Our numerics indicate that Refoqus can save several orders of magnitude in shot cost, even relative to optimizers that sample over measurement operators alone.
translated by 谷歌翻译
量子信息技术的快速发展显示了在近期量子设备中模拟量子场理论的有希望的机会。在这项工作中,我们制定了1+1尺寸$ \ lambda \ phi \ phi^4 $量子场理论的(时间依赖性)变异量子模拟理论,包括编码,状态准备和时间演化,并具有多个数值模拟结果。这些算法可以理解为Jordan-Lee-Preskill算法的近期变异类似物,这是使用通用量子设备模拟量子场理论的基本算法。此外,我们强调了基于LSZ降低公式和几种计算效率的谐波振荡器基础编码的优势,例如在实施单一耦合群集ANSATZ的肺泡版本时,以准备初始状态。我们还讨论了如何在量子场理论仿真中规避“光谱拥挤”问题,并根据州和子空间保真度评估我们的算法。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing. A key issue is how to address the inherent non-linearity of classical deep learning, a problem in the quantum domain due to the fact that the composition of an arbitrary number of quantum gates, consisting of a series of sequential unitary transformations, is intrinsically linear. This problem has been variously approached in the literature, principally via the introduction of measurements between layers of unitary transformations. In this paper, we introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning typically associated with superior generalization performance in the classical domain, specifically, hierarchical feature learning. Our approach generalizes the notion of Quantum Neural Tangent Kernel, which has been used to study the dynamics of classical and quantum machine learning models. The Quantum Path Kernel exploits the parameter trajectory, i.e. the curve delineated by model parameters as they evolve during training, enabling the representation of differential layer-wise convergence behaviors, or the formation of hierarchical parametric dependencies, in terms of their manifestation in the gradient space of the predictor function. We evaluate our approach with respect to variants of the classification of Gaussian XOR mixtures - an artificial but emblematic problem that intrinsically requires multilevel learning in order to achieve optimal class separation.
translated by 谷歌翻译
我们为$ S_N $-Quivariant Quantum卷积电路,建立并大大概括了Jordan的置力量子计算(PQC)形式主义的理论框架。我们表明量子电路是傅里叶空间神经架构的自然选择,其在计算$ S_N $ -Fourier系数的矩阵元素中,与在对称组上的最佳已知的经典快速傅里叶变换(FFT)相比计算的超级指数加速。特别是,我们利用Okounkov-Vershik方法来证明Harrow的陈述(Ph.D.论文2005 P.160)在$ \ OperatorName {su}(d)$ - 和$ s_n $-frirep基地之间并建立$ s_n $-arequivariant卷积量子交替使用年轻Jucys-Murphy(YJM)元素的ans {\“a} tze($ s_n $ -cqa)。我们证明了$ s_n $ -cqa是密集的,因此在每美元内表达S_N $-Frirep块,其可以作为潜在的未来量子机器学习和优化应用成为普遍模型。我们的方法提供了另一种方法来证明量子近似优化算法(QAOA)的普遍性,从表示理论的角度来看。我们的框架可以自然地应用于全局$ \ Operatorname {su}(d)$对称性的各种问题。我们展示了数值模拟以展示ANS {\“A} TEE的有效性,以找到标志结构$ j_1 $ - $ j_2 $反铁磁性Heisenberg模型在矩形和矩形状态Kagome格子。我们的工作确定了特定机器学习问题的量子优势,并提供了庆祝的Okounkov-Vershik的表示理论的第一次应用于机器学习和量子物理学。
translated by 谷歌翻译
我们研究神经网络量子状态的无限限制($ \ idty $ -nnqs),它通过集合统计表现出代表性,以及易衰减的梯度下降动态。根据神经网络相关器表示瑞尼熵的集合平均值,并提出了表现出体积法纠缠的架构。开发了一种用于研究神经网络量子状态(NNQS)的梯度下降动态的一般框架,使用量子状态神经切线内核(QS-NTK)。对于$ \ infty $ -nnqs,简化了训练动态,因为QS-NTK变为确定性和常数。导出分析解决方案用于量子州监督学习,允许$ \ infty $ -nnqs恢复任何目标波段。横向场介绍模型有限和无限NNQ的数值实验和Fermi Hubbard模型表现出与理论的优秀协议。 $ \ infty $ -nnqs开辟了研究其他物理应用中的纠缠和培训动态的新机会,例如在寻找基地。
translated by 谷歌翻译
预计人工神经网络的领域将强烈受益于量子计算机的最新发展。特别是Quantum Machine Learning,一类利用用于创建可训练神经网络的Qubits的量子算法,将提供更多的力量来解决模式识别,聚类和机器学习等问题。前馈神经网络的构建块由连接到输出神经元的一层神经元组成,该输出神经元根据任意激活函数被激活。相应的学习算法以Rosenblatt Perceptron的名义。具有特定激活功能的量子感知是已知的,但仍然缺乏在量子计算机上实现任意激活功能的一般方法。在这里,我们用量子算法填充这个间隙,该算法能够将任何分析激活功能近似于其功率系列的任何给定顺序。与以前的提案不同,提供不可逆转的测量和简化的激活功能,我们展示了如何将任何分析功能近似于任何所需的准确性,而无需测量编码信息的状态。由于这种结构的一般性,任何前锋神经网络都可以根据Hornik定理获取通用近似性质。我们的结果重新纳入栅极型量子计算机体系结构中的人工神经网络科学。
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
The basic idea of quantum computing is surprisingly similar to that of kernel methods in machine learning, namely to efficiently perform computations in an intractably large Hilbert space. In this paper we explore some theoretical foundations of this link and show how it opens up a new avenue for the design of quantum machine learning algorithms. We interpret the process of encoding inputs in a quantum state as a nonlinear feature map that maps data to quantum Hilbert space. A quantum computer can now analyse the input data in this feature space. Based on this link, we discuss two approaches for building a quantum model for classification. In the first approach, the quantum device estimates inner products of quantum states to compute a classically intractable kernel. This kernel can be fed into any classical kernel method such as a support vector machine. In the second approach, we can use a variational quantum circuit as a linear model that classifies data explicitly in Hilbert space. We illustrate these ideas with a feature map based on squeezing in a continuous-variable system, and visualise the working principle with 2-dimensional mini-benchmark datasets.
translated by 谷歌翻译
现代量子机学习(QML)方法涉及在训练数据集上进行各种优化参数化量子电路,并随后对测试数据集(即,泛化)进行预测。在这项工作中,我们在培训数量为N $培训数据点后,我们在QML中对QML的普遍表现进行了全面的研究。我们表明,Quantum机器学习模型的泛化误差与$ T $培训门的尺寸在$ \ sqrt {t / n} $上缩放。当只有$ k \ ll t $ gates在优化过程中经历了大量变化时,我们证明了泛化误差改善了$ \ sqrt {k / n} $。我们的结果意味着将Unitaries编制到通常使用指数训练数据的量子计算行业的多项式栅极数量,这是一项通常使用指数尺寸训练数据的大量应用程序。我们还表明,使用量子卷积神经网络的相位过渡的量子状态的分类只需要一个非常小的训练数据集。其他潜在应用包括学习量子误差校正代码或量子动态模拟。我们的工作将新的希望注入QML领域,因为较少的培训数据保证了良好的概括。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
基于内核的量子分类器是用于复杂数据的超线化分类的最有趣,最强大的量子机学习技术,可以在浅深度量子电路(例如交换测试分类器)中轻松实现。出乎意料的是,通过引入差异方案,可以将支持向量机固有而明确地实现,以将SVM理论的二次优化问题映射到量子古典的变分优化问题。该方案使用参数化的量子电路(PQC)实现,以创建一个不均匀的权重向量,以索引量子位,可以在线性时间内评估训练损失和分类得分。我们训练该变量量子近似支持向量机(VQASVM)的经典参数,该参数可以转移到其他VQASVM决策推理电路的许多副本中,以分类新查询数据。我们的VQASVM算法对基于云的量子计算机的玩具示例数据集进行了实验,以进行可行性评估,并进行了数值研究以评估其在标准的IRIS花朵数据集上的性能。虹膜数据分类的准确性达到98.8%。
translated by 谷歌翻译
具有动量的迷你批次SGD是学习大型预测模型的基本算法。在本文中,我们开发了一个新的分析框架,以分析不同动量和批次大小的线性模型的迷你批次SGD。我们的关键思想是用其生成函数来描述损耗值序列,可以以紧凑的形式写出,假设模型权重的第二矩对角近似。通过分析这种生成功能,我们得出了有关收敛条件,模型相结构和最佳学习设置的各种结论。作为几个示例,我们表明1)优化轨迹通常可以从“信号主导”转换为“噪声主导”阶段,以分析性预测的时间尺度; 2)在“信号主导”(但不是“以噪声为主导”的)阶段中,有利于选择较大的有效学习率,但是对于任何有限的批次大小,其值必须受到限制,以避免发散; 3)可以在负动量下实现最佳收敛速率。我们通过对MNIST和合成问题进行广泛的实验来验证我们的理论预测,并找到良好的定量一致性。
translated by 谷歌翻译
在通过梯度下降训练过度参数化的模型函数时,有时参数不会显着变化,并且保持接近其初始值。该现象称为懒惰训练,并激发了对模型函数围绕初始参数的线性近似的考虑。在懒惰的制度中,这种线性近似模仿了参数化函数的行为,其相关内核称为切线内核,指定了模型的训练性能。众所周知,在宽度较大的(经典)神经网络的情况下进行懒惰训练。在本文中,我们表明,几何局部参数化量子电路的训练进入了大量Qubits的懒惰制度。更准确地说,我们证明了这种几何局部参数化量子电路的变化速率,以及相关量子模型函数的线性近似的精确度;随着Qubits的数量的增加,这两个边界都趋于零。我们通过数值模拟支持我们的分析结果。
translated by 谷歌翻译
已知量子计算机可以在某些专业设置中使用经典的最先进的机器学习方法提供加速。例如,已证明量子内核方法可以在离散对数问题的学习版本上提供指数加速。了解量子模型的概括对于实现实际利益问题的类似加速至关重要。最近的结果表明,量子特征空间的指数大小阻碍了概括。尽管这些结果表明,量子模型在量子数数量较大时无法概括,但在本文中,我们表明这些结果依赖于过度限制性的假设。我们通过改变称为量子内核带宽的超参数来考虑更广泛的模型。我们分析了大量限制,并为可以以封闭形式求解的量子模型的概括提供了明确的公式。具体而言,我们表明,更改带宽的值可以使模型从不能概括到任何目标函数到对准目标的良好概括。我们的分析表明,带宽如何控制内核积分操作员的光谱,从而如何控制模型的电感偏置。我们从经验上证明,我们的理论正确地预测带宽如何影响质量模型在具有挑战性的数据集上的概括,包括远远超出我们理论假设的数据集。我们讨论了结果对机器学习中量子优势的含义。
translated by 谷歌翻译