我们为$ S_N $-Quivariant Quantum卷积电路,建立并大大概括了Jordan的置力量子计算(PQC)形式主义的理论框架。我们表明量子电路是傅里叶空间神经架构的自然选择,其在计算$ S_N $ -Fourier系数的矩阵元素中,与在对称组上的最佳已知的经典快速傅里叶变换(FFT)相比计算的超级指数加速。特别是,我们利用Okounkov-Vershik方法来证明Harrow的陈述(Ph.D.论文2005 P.160)在$ \ OperatorName {su}(d)$ - 和$ s_n $-frirep基地之间并建立$ s_n $-arequivariant卷积量子交替使用年轻Jucys-Murphy(YJM)元素的ans {\“a} tze($ s_n $ -cqa)。我们证明了$ s_n $ -cqa是密集的,因此在每美元内表达S_N $-Frirep块,其可以作为潜在的未来量子机器学习和优化应用成为普遍模型。我们的方法提供了另一种方法来证明量子近似优化算法(QAOA)的普遍性,从表示理论的角度来看。我们的框架可以自然地应用于全局$ \ Operatorname {su}(d)$对称性的各种问题。我们展示了数值模拟以展示ANS {\“A} TEE的有效性,以找到标志结构$ j_1 $ - $ j_2 $反铁磁性Heisenberg模型在矩形和矩形状态Kagome格子。我们的工作确定了特定机器学习问题的量子优势,并提供了庆祝的Okounkov-Vershik的表示理论的第一次应用于机器学习和量子物理学。
translated by 谷歌翻译
我们介绍了Equivariant卷积算法的框架,该算法是针对具有任意SU($ d $)对称性的物理系统的许多机器学习任务而定制的。它使我们能够增强量子计算的自然模型 - 渗透量子计算(PQC)[量子INF。Comput。,10,470-497(2010)] - 并定义了一个更强大的模型:PQC+。虽然PQC被证明是有效的经典模拟,但我们表现出一个可以在PQC+机器上有效解决的问题,而最著名的经典算法则以$ O(N!n^2)$时间运行,从而提供了强有力的证据,从而提供了反对PQC+的证据。经典的模拟。我们进一步讨论可以在PQC+范式中执行的实用量子机学习算法。
translated by 谷歌翻译
量子信息技术的快速发展显示了在近期量子设备中模拟量子场理论的有希望的机会。在这项工作中,我们制定了1+1尺寸$ \ lambda \ phi \ phi^4 $量子场理论的(时间依赖性)变异量子模拟理论,包括编码,状态准备和时间演化,并具有多个数值模拟结果。这些算法可以理解为Jordan-Lee-Preskill算法的近期变异类似物,这是使用通用量子设备模拟量子场理论的基本算法。此外,我们强调了基于LSZ降低公式和几种计算效率的谐波振荡器基础编码的优势,例如在实施单一耦合群集ANSATZ的肺泡版本时,以准备初始状态。我们还讨论了如何在量子场理论仿真中规避“光谱拥挤”问题,并根据州和子空间保真度评估我们的算法。
translated by 谷歌翻译
量子机学习(QML)模型旨在从量子状态中编码的数据中学习。最近,已经表明,几乎没有归纳偏差的模型(即,对模型中嵌入的问题没有假设)可能存在训练性和概括性问题,尤其是对于大问题。因此,开发编码与当前问题有关的信息的方案是至关重要的。在这项工作中,我们提出了一个简单但功能强大的框架,其中数据中的基本不向导用于构建QML模型,该模型通过构造尊重这些对称性。这些所谓的组不变模型产生的输出在对称组$ \ mathfrak {g} $的任何元素的动作下保持不变。我们提出了理论结果,基于$ \ mathfrak {g} $ - 不变型模型的设计,并通过几个范式QML分类任务来体现其应用程序,包括$ \ mathfrak {g} $是一个连续的谎言组,也是一个lie group,也是一个。离散对称组。值得注意的是,我们的框架使我们能够以一种优雅的方式恢复文献的几种知名算法,并发现了新的算法。综上所述,我们期望我们的结果将有助于为QML模型设计采用更多几何和群体理论方法铺平道路。
translated by 谷歌翻译
与小组元素的作用一样,在数学中通常用于分析或利用给定问题设置中固有的对称性。在这里,我们提供有效的量子算法,用于对存储为量子状态的数据进行线性组卷积和互相关。我们的算法的运行时间在组的维度上是对数,因此与经典算法相比,当输入数据作为量子状态和线性操作提供良好的条件时,提供了指数加速。我们的理论框架是出于解决代数问题的量子算法的丰富文献,为量化机器学习和采用小组操作的数值方法中的许多算法开辟了一条途径。
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
现代量子机学习(QML)方法涉及在训练数据集上进行各种优化参数化量子电路,并随后对测试数据集(即,泛化)进行预测。在这项工作中,我们在培训数量为N $培训数据点后,我们在QML中对QML的普遍表现进行了全面的研究。我们表明,Quantum机器学习模型的泛化误差与$ T $培训门的尺寸在$ \ sqrt {t / n} $上缩放。当只有$ k \ ll t $ gates在优化过程中经历了大量变化时,我们证明了泛化误差改善了$ \ sqrt {k / n} $。我们的结果意味着将Unitaries编制到通常使用指数训练数据的量子计算行业的多项式栅极数量,这是一项通常使用指数尺寸训练数据的大量应用程序。我们还表明,使用量子卷积神经网络的相位过渡的量子状态的分类只需要一个非常小的训练数据集。其他潜在应用包括学习量子误差校正代码或量子动态模拟。我们的工作将新的希望注入QML领域,因为较少的培训数据保证了良好的概括。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
即使在数十年的量子计算开发之后,通常在经典同行中具有指数加速的通常有用量子算法的示例是稀缺的。线性代数定位量子机学习(QML)的量子算法中的最新进展作为这种有用的指数改进的潜在来源。然而,在一个意想不到的发展中,最近一系列的“追逐化”结果同样迅速消除了几个QML算法的指数加速度的承诺。这提出了关键问题是否是其他线性代数QML算法的指数加速度持续存在。在本文中,我们通过该镜头研究了Lloyd,Garnerone和Zanardi的拓扑数据分析算法后面的量子算法方法。我们提供了证据表明,该算法解决的问题通过表明其自然概括与模拟一个清洁量子位模型很难地难以进行棘手的 - 这被广泛认为需要在经典计算机上需要超时时间 - 并且非常可能免疫追逐。基于此结果,我们为等级估计和复杂网络分析等问题提供了许多新的量子算法,以及其经典侵害性的复杂性 - 理论上。此外,我们分析了近期实现的所提出的量子算法的适用性。我们的结果为全面吹嘘和限制的量子计算机提供了许多有用的应用程序,具有古典方法的保证指数加速,恢复了线性代数QML的一些潜力,以成为量子计算的杀手应用之一。
translated by 谷歌翻译
我们介绍了Netket的版本3,机器学习工具箱适用于许多身体量子物理学。Netket围绕神经网络量子状态构建,并为其评估和优化提供有效的算法。这个新版本是基于JAX的顶部,一个用于Python编程语言的可差分编程和加速的线性代数框架。最重要的新功能是使用机器学习框架的简明符号来定义纯Python代码中的任意神经网络ANS \“凝固的可能性,这允许立即编译以及渐变的隐式生成自动化。Netket 3还带来了GPU和TPU加速器的支持,对离散对称组的高级支持,块以缩放多程度的自由度,Quantum动态应用程序的驱动程序,以及改进的模块化,允许用户仅使用部分工具箱是他们自己代码的基础。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译
我们研究了图形表示学习的量子电路,并提出了等级的量子图电路(EQGCS),作为一类参数化量子电路,具有强大的关系感应偏压,用于学习图形结构数据。概念上,EQGCS作为量子图表表示学习的统一框架,允许我们定义几个有趣的子类,其中包含了现有的提案。就代表性权力而言,我们证明了感兴趣的子类是界限图域中的函数的普遍近似器,并提供实验证据。我们对量子图机学习方法的理论透视开启了许多方向以进行进一步的工作,可能导致具有超出古典方法的能力的模型。
translated by 谷歌翻译
我们研究了学习哈密顿$ h $ to precision $ \ varepsilon $的问题,假设我们将获得其gibbs state $ \ rho = \ exp( - \ beta h)/\ operatoratorname {tr}(\ exp(\ exp)( - \ beta h))$在已知的反温度$ \ beta $处。 Anshu,Arunachalam,Kuwahara和Soleimanifar(Nature Physics,2021,Arxiv:2004.07266)最近研究了此问题的样品复杂性(需要$ \ rho $的副本数量)。在高温(低$ \ beta $)制度中,他们的算法具有样品复杂性poly poly $(n,1/\ beta,1/\ varepsilon)$,并且可以用多项式但次优的时间复杂性实现。在本文中,我们研究了更一般的哈密顿人的同样问题。我们展示了如何学习哈密顿量的系数到错误$ \ varepsilon $带有样本复杂性$ s = o(\ log n/(\ beta \ varepsilon)^{2})$和样本大小的时间复杂性,$ o(s n)$。此外,我们证明了匹配的下限,表明我们算法的样品复杂性是最佳的,因此我们的时间复杂性也是最佳的。在附录中,我们证明,几乎可以使用相同的算法来从实时进化的统一$ e^{ - it H} $中学习$ h $,其中具有相似的示例和时间复杂性的小$ t $制度。
translated by 谷歌翻译
量子计算为某些问题提供了指数加速的潜力。但是,许多具有可证明加速的现有算法都需要当前不可用的耐故障量子计算机。我们提出了NISQ-TDA,这是第一个完全实现的量子机学习算法,其在任意经典(非手动)数据上具有可证明的指数加速,并且仅需要线性电路深度。我们报告了我们的NISQ-TDA算法的成功执行,该算法应用于在量子计算设备以及嘈杂的量子模拟器上运行的小数据集。我们从经验上证实,该算法对噪声是可靠的,并提供了目标深度和噪声水平,以实现现实世界中问题的近期,无耐受耐受性的量子优势。我们独特的数据加载投影方法是噪声鲁棒性的主要来源,引入了一种新的自我校正数据加载方法。
translated by 谷歌翻译
量子技术有可能彻底改变我们如何获取和处理实验数据以了解物理世界。一种实验设置,将来自物理系统的数据转换为稳定的量子存储器,以及使用量子计算机的数据的处理可以具有显着的优点,这些实验可以具有测量物理系统的传统实验,并且使用经典计算机处理结果。我们证明,在各种任务中,量子机器可以从指数较少的实验中学习而不是传统实验所需的实验。指数优势在预测物理系统的预测属性中,对噪声状态进行量子主成分分析,以及学习物理动态的近似模型。在一些任务中,实现指数优势所需的量子处理可能是适度的;例如,可以通过仅处理系统的两个副本来同时了解许多非信息可观察。我们表明,可以使用当今相对嘈杂的量子处理器实现大量超导QUBITS和1300个量子门的实验。我们的结果突出了量子技术如何能够实现强大的新策略来了解自然。
translated by 谷歌翻译
我们提出了一个算法框架,用于近距离矩阵上的量子启发的经典算法,概括了Tang的突破性量子启发算法开始的一系列结果,用于推荐系统[STOC'19]。由量子线性代数算法和gily \'en,su,low和wiebe [stoc'19]的量子奇异值转换(SVT)框架[SVT)的动机[STOC'19],我们开发了SVT的经典算法合适的量子启发的采样假设。我们的结果提供了令人信服的证据,表明在相应的QRAM数据结构输入模型中,量子SVT不会产生指数量子加速。由于量子SVT框架基本上概括了量子线性代数的所有已知技术,因此我们的结果与先前工作的采样引理相结合,足以概括所有有关取消量子机器学习算法的最新结果。特别是,我们的经典SVT框架恢复并经常改善推荐系统,主成分分析,监督聚类,支持向量机器,低秩回归和半决赛程序解决方案的取消结果。我们还为汉密尔顿低级模拟和判别分析提供了其他取消化结果。我们的改进来自识别量子启发的输入模型的关键功能,该模型是所有先前量子启发的结果的核心:$ \ ell^2 $ -Norm采样可以及时近似于其尺寸近似矩阵产品。我们将所有主要结果减少到这一事实,使我们的简洁,独立和直观。
translated by 谷歌翻译
量子计算是量子物理学的迷人研究领域。最近的进展激励我们在深度研究通用量子计算模型(UQCM),它位于量子计算的基础上,并与基本物理有紧密的连接。虽然已经发展到几十年前,但仍然缺乏含有形式化和理解UQCM的物理上简洁的原则或图片。考虑到静止新兴模型的多样性,但重要的是要了解经典和量子计算之间的差异很重要。在这项工作中,我们通过将其中几个类别分类为两类来进行统一uqcm的主要尝试,从而制作模型表。通过这样的表格,一些已知的模型或方案显示为杂交或模型的组合,更重要的是,它还导致尚未探讨的新方案。我们对UQCM的研究也导致了一些洞察量子算法。这项工作揭示了计算模型系统研究的重要性和可行性。
translated by 谷歌翻译
变形量子算法(VQAS)可以是噪声中间级量子(NISQ)计算机上的量子优势的路径。自然问题是NISQ设备的噪声是否对VQA性能的基本限制。我们严格证明对嘈杂的VQAS进行严重限制,因为噪音导致训练景观具有贫瘠高原(即消失梯度)。具体而言,对于考虑的本地Pauli噪声,我们证明梯度在Qubits $ N $的数量中呈指数呈指数增长,如果Ansatz的深度以$ N $线性增长。这些噪声诱导的贫瘠强韧(NIBPS)在概念上不同于无辐射贫瘠强度,其与随机参数初始化相关联。我们的结果是为通用Ansatz制定的,该通用ansatz包括量子交替运算符ANSATZ和酉耦合簇Ansatz等特殊情况。对于前者来说,我们的数值启发式展示了用于现实硬件噪声模型的NIBP现象。
translated by 谷歌翻译
我们研究量子存储器的力量,以了解量子系统和动态的学习性质,这在物理和化学方面具有重要意义。许多最先进的学习算法需要访问额外的外部量子存储器。虽然这种量子存储器不需要先验,但在许多情况下,不利用量子存储器的算法需要比那些更多样的数据。我们表明,这种权衡在各种学习问题中是固有的。我们的结果包括以下内容:(1)我们显示以$ M $ -Qubit状态Rho执行暗影断层扫描,以M $观察到,任何没有量子存储器的算法需要$ \ omega(\ min(m,2 ^ n) )最坏情况下Rho的标准。达到对数因子,这与[HKP20]的上限匹配,完全解决了[AAR18,AR19]中的打开问题。 (2)我们在具有和不具有量子存储器之间的算法之间建立指数分离,用于纯度测试,区分扰扰和去极化的演变,以及在物理动态中揭示对称性。我们的分离通过允许更广泛的无量子存储器的算法来改善和概括[ACQ21]的工作。 (3)我们提供量子存储器和样本复杂性之间的第一个权衡。我们证明,估计所有$ N $ -Qubit Pauli可观察到的绝对值,Qumum Memory的$ K <N $ Qubits的算法需要至少$ \ omega(2 ^ {(nk)/ 3})$样本,但在那里是使用$ n $ -Qubit量子存储器的算法,该算法只需要$ o(n)$ samples。我们展示的分离足够大,并且可能已经是显而易见的,例如,数十Qubits。这提供了一种具体的路径,朝着使用量子存储器学习算法的实际优势。
translated by 谷歌翻译