我们研究了学习哈密顿$ h $ to precision $ \ varepsilon $的问题,假设我们将获得其gibbs state $ \ rho = \ exp( - \ beta h)/\ operatoratorname {tr}(\ exp(\ exp)( - \ beta h))$在已知的反温度$ \ beta $处。 Anshu,Arunachalam,Kuwahara和Soleimanifar(Nature Physics,2021,Arxiv:2004.07266)最近研究了此问题的样品复杂性(需要$ \ rho $的副本数量)。在高温(低$ \ beta $)制度中,他们的算法具有样品复杂性poly poly $(n,1/\ beta,1/\ varepsilon)$,并且可以用多项式但次优的时间复杂性实现。在本文中,我们研究了更一般的哈密顿人的同样问题。我们展示了如何学习哈密顿量的系数到错误$ \ varepsilon $带有样本复杂性$ s = o(\ log n/(\ beta \ varepsilon)^{2})$和样本大小的时间复杂性,$ o(s n)$。此外,我们证明了匹配的下限,表明我们算法的样品复杂性是最佳的,因此我们的时间复杂性也是最佳的。在附录中,我们证明,几乎可以使用相同的算法来从实时进化的统一$ e^{ - it H} $中学习$ h $,其中具有相似的示例和时间复杂性的小$ t $制度。
translated by 谷歌翻译
我们使用对单个的,相同的$ d $维状态的相同副本进行的测量来研究量子断层扫描和阴影断层扫描的问题。我们首先因Haah等人而重新审视已知的下限。 (2017年)在痕量距离上具有准确性$ \ epsilon $的量子断层扫描,当测量选择与先前观察到的结果无关(即它们是非适应性的)时。我们简要地证明了这一结果。当学习者使用具有恒定结果数量的测量值时,这会导致更强的下限。特别是,这严格确定了民间传说的最佳性``Pauli phymography''算法的样本复杂性。我们还得出了$ \ omega(r^2 d/\ epsilon^2)$和$ \ omega(r^2 d/\ epsilon^2)的新颖界限( R^2 d^2/\ epsilon^2)$用于学习排名$ r $状态,分别使用任意和恒定的结果测量,在非适应性情况下。除了样本复杂性,对于学习量子的实际意义,是一种实际意义的资源状态是算法使用的不同测量值的数量。我们将下限扩展到学习者从固定的$ \ exp(o(d))$测量的情况下进行自适应测量的情况。这特别意味着适应性。没有使用可有效实现的单拷贝测量结果给我们任何优势。在目标是预测给定的可观察到给定序列的期望值的情况下,我们还获得了类似的界限,该任务被称为阴影层析成像。在适应性的情况下单拷贝测量可通过多项式大小的电路实现,我们证明了基于计算给定可观察物的样本平均值的直接策略是最佳的。
translated by 谷歌翻译
Learning about physical systems from quantum-enhanced experiments, relying on a quantum memory and quantum processing, can outperform learning from experiments in which only classical memory and processing are available. Whereas quantum advantages have been established for a variety of state learning tasks, quantum process learning allows for comparable advantages only with a careful problem formulation and is less understood. We establish an exponential quantum advantage for learning an unknown $n$-qubit quantum process $\mathcal{N}$. We show that a quantum memory allows to efficiently solve the following tasks: (a) learning the Pauli transfer matrix of an arbitrary $\mathcal{N}$, (b) predicting expectation values of bounded Pauli-sparse observables measured on the output of an arbitrary $\mathcal{N}$ upon input of a Pauli-sparse state, and (c) predicting expectation values of arbitrary bounded observables measured on the output of an unknown $\mathcal{N}$ with sparse Pauli transfer matrix upon input of an arbitrary state. With quantum memory, these tasks can be solved using linearly-in-$n$ many copies of the Choi state of $\mathcal{N}$, and even time-efficiently in the case of (b). In contrast, any learner without quantum memory requires exponentially-in-$n$ many queries, even when querying $\mathcal{N}$ on subsystems of adaptively chosen states and performing adaptively chosen measurements. In proving this separation, we extend existing shadow tomography upper and lower bounds from states to channels via the Choi-Jamiolkowski isomorphism. Moreover, we combine Pauli transfer matrix learning with polynomial interpolation techniques to develop a procedure for learning arbitrary Hamiltonians, which may have non-local all-to-all interactions, from short-time dynamics. Our results highlight the power of quantum-enhanced experiments for learning highly complex quantum dynamics.
translated by 谷歌翻译
我们研究量子存储器的力量,以了解量子系统和动态的学习性质,这在物理和化学方面具有重要意义。许多最先进的学习算法需要访问额外的外部量子存储器。虽然这种量子存储器不需要先验,但在许多情况下,不利用量子存储器的算法需要比那些更多样的数据。我们表明,这种权衡在各种学习问题中是固有的。我们的结果包括以下内容:(1)我们显示以$ M $ -Qubit状态Rho执行暗影断层扫描,以M $观察到,任何没有量子存储器的算法需要$ \ omega(\ min(m,2 ^ n) )最坏情况下Rho的标准。达到对数因子,这与[HKP20]的上限匹配,完全解决了[AAR18,AR19]中的打开问题。 (2)我们在具有和不具有量子存储器之间的算法之间建立指数分离,用于纯度测试,区分扰扰和去极化的演变,以及在物理动态中揭示对称性。我们的分离通过允许更广泛的无量子存储器的算法来改善和概括[ACQ21]的工作。 (3)我们提供量子存储器和样本复杂性之间的第一个权衡。我们证明,估计所有$ N $ -Qubit Pauli可观察到的绝对值,Qumum Memory的$ K <N $ Qubits的算法需要至少$ \ omega(2 ^ {(nk)/ 3})$样本,但在那里是使用$ n $ -Qubit量子存储器的算法,该算法只需要$ o(n)$ samples。我们展示的分离足够大,并且可能已经是显而易见的,例如,数十Qubits。这提供了一种具体的路径,朝着使用量子存储器学习算法的实际优势。
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
我们提出了一个算法框架,用于近距离矩阵上的量子启发的经典算法,概括了Tang的突破性量子启发算法开始的一系列结果,用于推荐系统[STOC'19]。由量子线性代数算法和gily \'en,su,low和wiebe [stoc'19]的量子奇异值转换(SVT)框架[SVT)的动机[STOC'19],我们开发了SVT的经典算法合适的量子启发的采样假设。我们的结果提供了令人信服的证据,表明在相应的QRAM数据结构输入模型中,量子SVT不会产生指数量子加速。由于量子SVT框架基本上概括了量子线性代数的所有已知技术,因此我们的结果与先前工作的采样引理相结合,足以概括所有有关取消量子机器学习算法的最新结果。特别是,我们的经典SVT框架恢复并经常改善推荐系统,主成分分析,监督聚类,支持向量机器,低秩回归和半决赛程序解决方案的取消结果。我们还为汉密尔顿低级模拟和判别分析提供了其他取消化结果。我们的改进来自识别量子启发的输入模型的关键功能,该模型是所有先前量子启发的结果的核心:$ \ ell^2 $ -Norm采样可以及时近似于其尺寸近似矩阵产品。我们将所有主要结果减少到这一事实,使我们的简洁,独立和直观。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
我们研究了量子多体系统的哈密顿量的参数的问题,鉴于对系统的访问有限。在这项工作中,我们基于最近通过衍生估计进行哈密顿学习的方法。我们提出了一项协议,以改善先前作品的缩放依赖性,尤其是在与哈密顿式结构有关的参数方面(例如,其locality $ k $)。此外,通过在我们的协议的性能上得出精确的界限,我们能够在我们的学习协议中为高参数的理论上最佳设置提供精确的数值处方,例如最大进化时间(当统一动力学学习时)或最低温度(当与吉布斯国家学习时)。多亏了这些改进,我们的协议对于大型问题很实际:我们通过对80克系统的协议进行数值模拟来证明这一点。
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
我们研究了小组测试问题,其目标是根据合并测试的结果,确定一组k感染的人,这些k含有稀有疾病,这些人在经过测试中至少有一个受感染的个体时返回阳性的结果。团体。我们考虑将个人分配给测试的两个不同的简单随机过程:恒定柱设计和伯努利设计。我们的第一组结果涉及基本统计限制。对于恒定柱设计,我们给出了一个新的信息理论下限,这意味着正确识别的感染者的比例在测试数量越过特定阈值时会经历急剧的“全或全或无所不包”的相变。对于Bernoulli设计,我们确定解决相关检测问题所需的确切测试数量(目的是区分小组测试实例和纯噪声),改善Truong,Aldridge和Scarlett的上限和下限(2020)。对于两个小组测试模型,我们还研究了计算有效(多项式时间)推理程序的能力。我们确定了解决检测问题的低度多项式算法所需的精确测试数量。这为在少量稀疏度的检测和恢复问题中都存在固有的计算统计差距提供了证据。值得注意的是,我们的证据与Iliopoulos和Zadik(2021)相反,后者预测了Bernoulli设计中没有计算统计差距。
translated by 谷歌翻译
我们提供了新的基于梯度的方法,以便有效解决广泛的病态化优化问题。我们考虑最小化函数$ f:\ mathbb {r} ^ d \ lightarrow \ mathbb {r} $的问题,它是隐含的可分解的,作为$ m $未知的非交互方式的总和,强烈的凸起功能并提供方法这解决了这个问题,这些问题是缩放(最快的对数因子)作为组件的条件数量的平方根的乘积。这种复杂性绑定(我们证明几乎是最佳的)可以几乎指出的是加速梯度方法的几乎是指数的,这将作为$ F $的条件数量的平方根。此外,我们提供了求解该多尺度优化问题的随机异标变体的有效方法。而不是学习$ F $的分解(这将是过度昂贵的),而是我们的方法应用一个清洁递归“大步小步”交错标准方法。由此产生的算法使用$ \ tilde {\ mathcal {o}}(d m)$空间,在数字上稳定,并打开门以更细粒度的了解凸优化超出条件号的复杂性。
translated by 谷歌翻译
We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.
translated by 谷歌翻译
我们重新审视量子状态认证的基本问题:给定混合状态$ \ rho \中的副本\ mathbb {c} ^ {d \ times d} $和混合状态$ \ sigma $的描述,决定是否$ \ sigma = \ rho $或$ \ | \ sigma - \ rho \ | _ {\ mathsf {tr}} \ ge \ epsilon $。当$ \ sigma $最大化时,这是混合性测试,众所周知,$ \ omega(d ^ {\ theta(1)} / \ epsilon ^ 2)$副本是必要的,所以确切的指数取决于测量类型学习者可以使[OW15,BCL20],并且在许多这些设置中,有一个匹配的上限[OW15,Bow19,BCL20]。可以避免这种$ d ^ {\ theta(1)} $依赖于某些类型的混合状态$ \ sigma $,例如。大约低等级的人?更常见地,是否存在一个简单的功能$ f:\ mathbb {c} ^ {d \ times d} \ to \ mathbb {r} _ {\ ge 0} $,其中一个人可以显示$ \ theta(f( \ sigma)/ \ epsilon ^ 2)$副本是必要的,并且足以就任何$ \ sigma $的国家认证?这种实例 - 最佳边界在经典分布测试的背景下是已知的,例如, [VV17]。在这里,我们为量子设置提供了这个性质的第一个界限,显示(达到日志因子),即使用非接受不连贯测量的状态认证的复杂性复杂性基本上是通过复制复杂性进行诸如$ \ sigma $之间的保真度的复杂性。和最大混合的状态。令人惊讶的是,我们的界限与经典问题的实例基本上不同,展示了两个设置之间的定性差异。
translated by 谷歌翻译
我们提出了第一近最优量子算法,用于估计欧几里德的规范,与有限均值和协方差的矢量值随机变量的平均值。我们的结果旨在将多元子高斯估计的理论延伸到量子设置。与经典上不同,如果任何单变量估计器都可以在维度中最多的对数开销转换为多变量估计器,则不会在量子设置中证明类似的结果。实际上,当样品复杂性小于尺寸时,Heinrich排除了平均估计问题的量子优势。我们的主要结果是表明,在这种低精度的方案之外,有一个量子估计值优于任何经典估算器。我们的方法比单变量设置大致涉及,大多数量子估计人员依赖于相位估计。我们利用各种额外的算法技术,如幅度放大,伯恩斯坦 - Vazirani算法和量子奇异值转换。我们的分析还使用多元截断统计的浓度不等式。我们以前在文献中出现的两个不同输入模型中的Quantum估算器。第一个提供对随机变量的二进制表示的相干访问,并且它包含经典设置。在第二模型中,随机变量直接编码到量子寄存器的相位中。该模型在许多量子算法中自然出现,但常常具有古典样品通常是无与伦比的。我们将我们的技术调整为这两个设置,我们表明第二种模型严格较弱,以解决平均估计问题。最后,我们描述了我们的算法的几个应用,特别是在测量通勤可观察到的期望值和机器学习领域时。
translated by 谷歌翻译
我们开发了一种高效的随机块模型中的弱恢复算法。该算法与随机块模型的Vanilla版本的最佳已知算法的统计保证匹配。从这个意义上讲,我们的结果表明,随机块模型没有稳健性。我们的工作受到最近的银行,Mohanty和Raghavendra(SODA 2021)的工作,为相应的区别问题提供了高效的算法。我们的算法及其分析显着脱离了以前的恢复。关键挑战是我们算法的特殊优化景观:种植的分区可能远非最佳意义,即完全不相关的解决方案可以实现相同的客观值。这种现象与PCA的BBP相转变的推出效应有关。据我们所知,我们的算法是第一个在非渐近设置中存在这种推出效果的鲁棒恢复。我们的算法是基于凸优化的框架的实例化(与平方和不同的不同),这对于其他鲁棒矩阵估计问题可能是有用的。我们的分析的副产物是一种通用技术,其提高了任意强大的弱恢复算法的成功(输入的随机性)从恒定(或缓慢消失)概率以指数高概率。
translated by 谷歌翻译
矩阵正常模型,高斯矩阵变化分布的系列,其协方差矩阵是两个较低尺寸因子的Kronecker乘积,经常用于模拟矩阵变化数据。张量正常模型将该家庭推广到三个或更多因素的Kronecker产品。我们研究了矩阵和张量模型中协方差矩阵的Kronecker因子的估计。我们向几个自然度量中的最大似然估计器(MLE)实现的误差显示了非因素界限。与现有范围相比,我们的结果不依赖于条件良好或稀疏的因素。对于矩阵正常模型,我们所有的所有界限都是最佳的对数因子最佳,对于张量正常模型,我们对最大因数和整体协方差矩阵的绑定是最佳的,所以提供足够的样品以获得足够的样品以获得足够的样品常量Frobenius错误。在与我们的样本复杂性范围相同的制度中,我们表明迭代程序计算称为触发器算法称为触发器算法的MLE的线性地收敛,具有高概率。我们的主要工具是Fisher信息度量诱导的正面矩阵的几何中的测地强凸性。这种强大的凸起由某些随机量子通道的扩展来决定。我们还提供了数值证据,使得将触发器算法与简单的收缩估计器组合可以提高缺乏采样制度的性能。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
我们给出了\ emph {list-codobable协方差估计}的第一个多项式时间算法。对于任何$ \ alpha> 0 $,我们的算法获取输入样本$ y \ subseteq \ subseteq \ mathbb {r}^d $ size $ n \ geq d^{\ mathsf {poly}(1/\ alpha)} $获得通过对抗损坏I.I.D的$(1- \ alpha)n $点。从高斯分布中的样本$ x $ size $ n $,其未知平均值$ \ mu _*$和协方差$ \ sigma _*$。在$ n^{\ mathsf {poly}(1/\ alpha)} $ time中,它输出$ k = k(\ alpha)=(1/\ alpha)^{\ mathsf {poly}的常数大小列表(1/\ alpha)} $候选参数,具有高概率,包含$(\ hat {\ mu},\ hat {\ sigma})$,使得总变化距离$ tv(\ Mathcal {n}(n})(n}(n})( \ mu _*,\ sigma _*),\ Mathcal {n}(\ hat {\ mu},\ hat {\ sigma}))<1-o _ {\ alpha}(1)$。这是距离的统计上最强的概念,意味着具有独立尺寸误差的参数的乘法光谱和相对Frobenius距离近似。我们的算法更普遍地适用于$(1- \ alpha)$ - 任何具有低度平方总和证书的分布$ d $的损坏,这是两个自然分析属性的:1)一维边际和抗浓度2)2度多项式的超收缩率。在我们工作之前,估计可定性设置的协方差的唯一已知结果是针对Karmarkar,Klivans和Kothari(2019),Raghavendra和Yau(2019和2019和2019和2019和2019年)的特殊情况。 2020年)和巴克西(Bakshi)和科塔里(Kothari)(2020年)。这些结果需要超级物理时间,以在基础维度中获得任何子构误差。我们的结果意味着第一个多项式\ emph {extcect}算法,用于列表可解码的线性回归和子空间恢复,尤其允许获得$ 2^{ - \ Mathsf { - \ Mathsf {poly}(d)} $多项式时间错误。我们的结果还意味着改进了用于聚类非球体混合物的算法。
translated by 谷歌翻译
我们研究了用于线性回归的主动采样算法,该算法仅旨在查询目标向量$ b \ in \ mathbb {r} ^ n $的少量条目,并将近最低限度输出到$ \ min_ {x \ In \ mathbb {r} ^ d} \ | ax-b \ | $,其中$ a \ in \ mathbb {r} ^ {n \ times d} $是一个设计矩阵和$ \ | \ cdot \ | $是一些损失函数。对于$ \ ell_p $ norm回归的任何$ 0 <p <\ idty $,我们提供了一种基于Lewis权重采样的算法,其使用只需$ \ tilde {o}输出$(1+ \ epsilon)$近似解决方案(d ^ {\ max(1,{p / 2})} / \ mathrm {poly}(\ epsilon))$查询到$ b $。我们表明,这一依赖于$ D $是最佳的,直到对数因素。我们的结果解决了陈和Derezi的最近开放问题,陈和Derezi \'{n} Ski,他们为$ \ ell_1 $ norm提供了附近的最佳界限,以及$ p \中的$ \ ell_p $回归的次优界限(1,2) $。我们还提供了$ O的第一个总灵敏度上限(D ^ {\ max \ {1,p / 2 \} \ log ^ 2 n)$以满足最多的$ p $多项式增长。这改善了Tukan,Maalouf和Feldman的最新结果。通过将此与我们的技术组合起来的$ \ ell_p $回归结果,我们获得了一个使$ \ tilde o的活动回归算法(d ^ {1+ \ max \ {1,p / 2 \}} / \ mathrm {poly}。 (\ epsilon))$疑问,回答陈和德里兹的另一个打开问题{n}滑雪。对于Huber损失的重要特殊情况,我们进一步改善了我们对$ \ tilde o的主动样本复杂性的绑定(d ^ {(1+ \ sqrt2)/ 2} / \ epsilon ^ c)$和非活跃$ \ tilde o的样本复杂性(d ^ {4-2 \ sqrt 2} / \ epsilon ^ c)$,由于克拉克森和伍德拉夫而改善了Huber回归的以前的D ^ 4 $。我们的敏感性界限具有进一步的影响,使用灵敏度采样改善了各种先前的结果,包括orlicz规范子空间嵌入和鲁棒子空间近似。最后,我们的主动采样结果为每种$ \ ell_p $ norm提供的第一个Sublinear时间算法。
translated by 谷歌翻译
聚类是无监督学习中的基本原始,它引发了丰富的计算挑战性推理任务。在这项工作中,我们专注于将$ D $ -dimential高斯混合的规范任务与未知(和可能的退化)协方差集成。最近的作品(Ghosh等人。恢复在高斯聚类实例中种植的某些隐藏结构。在许多类似的推理任务上的工作开始,这些较低界限强烈建议存在群集的固有统计到计算间隙,即群集任务是\ yringit {statistically}可能但没有\ texit {多项式 - 时间}算法成功。我们考虑的聚类任务的一个特殊情况相当于在否则随机子空间中找到种植的超立体载体的问题。我们表明,也许令人惊讶的是,这种特定的聚类模型\ extent {没有展示}统计到计算间隙,即使在这种情况下继续应用上述的低度和SOS下限。为此,我们提供了一种基于Lenstra - Lenstra - Lovasz晶格基础减少方法的多项式算法,该方法实现了$ D + 1 $样本的统计上最佳的样本复杂性。该结果扩展了猜想统计到计算间隙的问题的类问题可以通过“脆弱”多项式算法“关闭”,突出显示噪声在统计到计算间隙的发作中的关键而微妙作用。
translated by 谷歌翻译