模型压缩(例如修剪和量化)已广泛应用于在资源有限的经典设备上优化神经网络。最近,对变分量子电路(VQC)的兴趣越来越大,即量子计算机上的一种神经网络(又称量子神经网络)。众所周知,近期的量子设备具有高噪声和有限的资源(即量子位,Qubits);但是,如何压缩量子神经网络尚未得到彻底研究。人们可能会认为将经典压缩技术应用于量子场景是很简单的。但是,本文表明,量子和经典神经网络的压缩之间存在差异。根据我们的观察,我们声称必须参与压缩过程。最重要的是,我们提出了第一个系统的框架,即CompVQC,以压缩量子神经网络(QNNS)。在CompVQC中,关键组件是一种新型的压缩算法,该算法基于乘数的交替方向方法(ADMM)。方法。实验证明了COMPVQC的优势,以微不足道的精度下降(<1%)降低了电路深度(几乎超过2.5%),这表现优于其他竞争对手。另一个有前途的事实是,我们的COMPVQC确实可以促进QNN在近期噪声量子设备上的鲁棒性。
translated by 谷歌翻译
For a large number of tasks, quantum computing demonstrates the potential for exponential acceleration over classical computing. In the NISQ era, variable-component subcircuits enable applications of quantum computing. To reduce the inherent noise and qubit size limitations of quantum computers, existing research has improved the accuracy and efficiency of Variational Quantum Algorithm (VQA). In this paper, we explore the various ansatz improvement methods for VQAs at the gate level and pulse level, and classify, evaluate and summarize them.
translated by 谷歌翻译
量子噪声是嘈杂中间级量子(NISQ)计算机中的关键挑战。以前的缓解噪声的工作主要集中在门级或脉冲级噪声自适应编译。然而,有限的研究工作通过使量子电路本身对噪声具有更高的优化级别。我们提出了Quoutumnas,是变分电路和量子位映射的噪声自适应共同搜索的全面框架。变形量子电路是构建QML和量子仿真的有希望的方法。然而,由于大型设计空间和参数训练成本,找到最佳变分电路及其最佳参数是具有挑战性的。我们建议通过引入新的超级速度来解耦电路搜索和参数培训。超电路由多层预定的参数化栅极构成,并通过迭代采样和更新其的参数子集(Subcircuit)训练。它提供了从头开始培训的子通差形性能的准确估计。然后我们执行Subcircuit的演进共同搜索和其量子位映射。使用从超级电路继承的参数和使用真实设备噪声模型进行估计,估计子电路性能。最后,我们执行迭代栅极修剪和FineTuning以去除冗余栅极。在10个量子计算上广泛评估了12个QML和VQE基准,Quoutumnas显着优于基线。对于QML,Quoutumnas是第一个展示超过95%的2级,85%的4级和真实QC的32%的10级分类准确性。与UCCSD相比,它还实现了H2,H2O,LIH,CH4,BEH2上的VQE任务的最低特征值。我们还开源Quantumengine(https://github.com/mit-han-lab/pytorch-quantum),用于快速训练参数化量子电路,以促进未来的研究。
translated by 谷歌翻译
变异量子算法(VQA)在NISQ时代表现出巨大的潜力。在VQA的工作流程中,Ansatz的参数迭代更新以近似所需的量子状态。我们已经看到了各种努力,以较少的大门起草更好的安萨兹。在量子计算机中,栅极Ansatz最终将转换为控制信号,例如TransMons上的微波脉冲。并且对照脉冲需要精心校准,以最大程度地减少误差(例如过度旋转和旋转)。在VQA的情况下,此过程将引入冗余,但是VQAS的变异性能自然可以通过更新幅度和频率参数来处理过度旋转和重组的问题。因此,我们提出了PAN,这是一种用于VQA的天然脉冲ANSATZ GENTARATOR框架。我们生成具有可训练参数用于振幅和频率的天然脉冲ansatz。在我们提出的锅中,我们正在调整参数脉冲,这些脉冲在NISQ计算机上得到了内在支持。考虑到本机 - 脉冲ANSATZ不符合参数迁移规则,我们需要部署非级别优化器。为了限制发送到优化器的参数数量,我们采用了一种生成本机 - 脉冲ANSATZ的渐进式方式。实验是在模拟器和量子设备上进行的,以验证我们的方法。当在NISQ机器上采用时,PAN获得的延迟平均提高了86%。 PAN在H2和HEH+上的VQE任务分别能够达到99.336%和96.482%的精度,即使NISQ机器中有很大的噪声。
translated by 谷歌翻译
随着实际量子计算机中的量子位数(QUBits)的数量恒定增加,实现和加速量子计算机上的普遍深入学习正在成为可能。随着这种趋势,基于量子神经元的不同设计出现了量子神经结构。 Quantum深度学习中的一个基本问题出现:什么是最好的量子神经结构?灵感来自古典计算的神经结构设计,该古典计算通常采用多种类型的神经元,本文首次尝试混合量子神经元设计来构建量子神经结构。我们观察到现有的量子神经元设计可能是完全不同但互补的,例如来自变分量子电路(VQC)和量子流的神经元。更具体地说,VQC可以应用真实值的权重,但遭受扩展到多个层,而量子流可以有效地构建多层网络,但仅限于使用二进制权重。要采取各自的优势,我们建议将它们混合在一起并弄清楚无缝连接的方法,而无需额外的昂贵测量。我们进一步研究了混合量子神经元的设计原理,这可以为未来提供量子神经结构勘探的指导。实验结果表明,具有混合量子神经元的鉴定的量子神经结构可以在MNIST数据集中达到90.62%的准确性,而VQC和量子流量分别比为52.77%和69.92%。
translated by 谷歌翻译
In recent times, Variational Quantum Circuits (VQC) have been widely adopted to different tasks in machine learning such as Combinatorial Optimization and Supervised Learning. With the growing interest, it is pertinent to study the boundaries of the classical simulation of VQCs to effectively benchmark the algorithms. Classically simulating VQCs can also provide the quantum algorithms with a better initialization reducing the amount of quantum resources needed to train the algorithm. This manuscript proposes an algorithm that compresses the quantum state within a circuit using a tensor ring representation which allows for the implementation of VQC based algorithms on a classical simulator at a fraction of the usual storage and computational complexity. Using the tensor ring approximation of the input quantum state, we propose a method that applies the parametrized unitary operations while retaining the low-rank structure of the tensor ring corresponding to the transformed quantum state, providing an exponential improvement of storage and computational time in the number of qubits and layers. This approximation is used to implement the tensor ring VQC for the task of supervised learning on Iris and MNIST datasets to demonstrate the comparable performance as that of the implementations from classical simulator using Matrix Product States.
translated by 谷歌翻译
嘈杂的中间级量子(NISQ)计算机的出现对设计量子神经网络进行了全量子学习任务来提高一个至关重要的挑战。为了弥合差距,这项工作提出了一种通过在变分量子电路(VQC)上的Quantum嵌入量子嵌入量子嵌入的可训练量子张量网络(QTN)来提出名为QTN-VQC的端到端学习框架。QTN的架构由参数张力列车网络组成,用于特征提取和普罗斯嵌入的张量产品。我们在两个观点突出显示QTN的QTN:(1)我们通过分析输入特征的表示功率理论上表征QTN;(2)QTN使端到端的参数模型管道,即QTN-VQC,从生成估计输出测量。我们在Mnist DataSet上的实验证明了QTN对Quantum嵌入其他量子嵌入方法的优点。
translated by 谷歌翻译
Quantum Machine Learning(QML)提供了一种强大的灵活的范式,可用于编程近期量子计算机,具有化学,计量,材料科学,数据科学和数学的应用。这里,一个以参数化量子电路的形式训练ANSATZ,以实现感兴趣的任务。然而,最近出现了挑战表明,由于随机性或硬件噪声引起的平坦训练景观,因此难以训练深度尖锐钽。这激励了我们的工作,在那里我们提出了一种可变的结构方法来构建QML的Ansatzes。我们的方法称为VANS(可变ANSATZ),将一组规则应用于在优化期间以知识的方式在增长和(至关重要的)中删除量子门。因此,VANS非常适合通过保持ANSATZ浅扫描来缓解训练性和与噪声相关的问题。我们在变分量子Eigensolver中使用Vans进行冷凝物质和量子化学应用,并且还在量子自身化学器中进行数据压缩,显示所有情况的成功结果。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
量子计算是使用量子力学执行计算的过程。该领域研究某些亚杀菌粒子的量子行为,以便随后在执行计算,以及大规模信息处理中使用。这些能力可以在计算时间和经典计算机上的成本方面提供量子计算机的优势。如今,由于计算复杂性或计算所需的时间,具有科学挑战,这是由于古典计算而无法执行,并且量子计算是可能的答案之一。然而,电流量子器件尚未实现必要的QUBITS,并且没有足够的容错才能实现这些目标。尽管如此,还有其他领域,如机器学习或化学,其中量子计算对电流量子器件有用。本手稿旨在展示2017年和2021年之间发布的论文的系统文献综述,以确定,分析和分类量子机器学习和其应用中使用的不同算法。因此,该研究确定了使用量子机器学习技术和算法的52篇文章。发现算法的主要类型是经典机器学习算法的量子实现,例如支持向量机或K最近邻模型,以及古典的深度学习算法,如量子神经网络。许多文章试图解决目前通过古典机器学习回答的问题,但使用量子设备和算法。即使结果很有希望,量子机器学习也远未实现其全部潜力。由于现有量子计算机缺乏足够的质量,速度和比例以允许量子计算来实现其全部潜力,因此需要提高量子硬件。
translated by 谷歌翻译
在过去的十年中,机器学习取得了巨大的成功,其应用程序从面部识别到自然语言处理不等。同时,在量子计算领域已经取得了快速的进步,包括开发强大的量子算法和高级量子设备。机器学习与量子物理学之间的相互作用具有将实际应用带给现代社会的有趣潜力。在这里,我们以参数化量子电路的形式关注量子神经网络。我们将主要讨论各种结构和编码量子神经网络的策略,以进行监督学习任务,并利用Yao.jl进行基准测试,这是用朱莉娅语言编写的量子模拟软件包。这些代码是有效的,旨在为科学工作中的初学者提供便利,例如开发强大的变分量子学习模型并协助相应的实验演示。
translated by 谷歌翻译
基于内核的量子分类器是用于复杂数据的超线化分类的最有趣,最强大的量子机学习技术,可以在浅深度量子电路(例如交换测试分类器)中轻松实现。出乎意料的是,通过引入差异方案,可以将支持向量机固有而明确地实现,以将SVM理论的二次优化问题映射到量子古典的变分优化问题。该方案使用参数化的量子电路(PQC)实现,以创建一个不均匀的权重向量,以索引量子位,可以在线性时间内评估训练损失和分类得分。我们训练该变量量子近似支持向量机(VQASVM)的经典参数,该参数可以转移到其他VQASVM决策推理电路的许多副本中,以分类新查询数据。我们的VQASVM算法对基于云的量子计算机的玩具示例数据集进行了实验,以进行可行性评估,并进行了数值研究以评估其在标准的IRIS花朵数据集上的性能。虹膜数据分类的准确性达到98.8%。
translated by 谷歌翻译
预计变形量子算法将展示量子计算在近期嘈杂量子计算机上的优点。然而,由于算法的大小增加,训练这种变分量子算法遭受梯度消失。以前的工作无法处理由现实量子硬件的必然噪声效应引起的渐变消失。在本文中,我们提出了一种新颖的培训方案,以减轻这种噪声引起的渐变消失。我们首先介绍一种新的成本函数,其中通过在截断的子空间中使用无意程可观察来显着增强梯度。然后,我们证明可以通过从新的成本函数与梯度优化原始成本函数来达到相同的最小值。实验表明,我们的新培训方案对于各种任务的主要变分量子算法非常有效。
translated by 谷歌翻译
对机器学习模型训练的栅极基量子电路的发展越来越兴趣。然而,关于电路设计的参数,噪声和其他测量误差对量子机器学习模型性能的影响很少。在本文中,我们探讨了使用多个标准机器学习数据集和IBM的Qiskit模拟器的关键电路设计参数(Qubits,Deposit等)的实际意义。总的来,我们评估超过6500个独特电路,以$ n \约120700美元。我们发现,一般浅(低深度)宽(更多Qubits)电路拓扑倾向于在没有噪声的情况下更优于更深的内容。我们还探讨了不同噪声概念的影响和影响,并讨论了对分类机学习任务的噪声更多/较低的电路拓扑。基于该研究结果,我们定义了使用基于门的NISQ量子计算机来实现近期承诺的电路拓扑指南。
translated by 谷歌翻译
使用量子卷积神经网络(QCNN)的机器学习在量子和经典数据分类中都取得了成功。在先前的研究中,在少数参数制度中,在相同的训练条件下,QCNN的分类准确性比其经典对应物具有更高的分类精度。但是,由于量子电路的大小有限,因此很难检查大规模量子模型的一般性能,这可以在不久的将来可靠地实施。我们建议转移学习是在嘈杂的中间量子量子时代利用小QCNN的有效策略。在经典到量词转移学习框架中,QCNN可以通过使用预训练的经典卷积神经网络(CNN)来解决复杂的分类问题,而无需大规模量子电路。我们对QCNN模型进行了数值模拟,并在转移学习下对MNIST数据分类进行了各种量子卷积和汇总操作,其中经典的CNN经过了时尚持续数据的培训。结果表明,在相似的训练条件下,从经典到量子CNN的转移学习比纯粹的经典转移学习模型要好得多。
translated by 谷歌翻译
在过去的十年中,机器学习彻底改变了基于视力的质量评估,卷积神经网络(CNN)现在已成为标准。在本文中,我们考虑了该开发中的潜在下一步,并描述了有效地将经典图像数据映射到量子状态并允许可靠的图像分析的Quanvolutional神经网络(QNN)算法。我们实际上演示了如何在计算机视觉中利用量子设备以及如何将量子卷积引入古典CNN中。在处理工业质量控制中的现实世界用例时,我们在Pennylane框架内实施了混合QNN模型,并从经验上观察它,可以使用比经典CNN更少的培训数据实现更好的预测。换句话说,我们从经验上观察到真正的量子优势,对于由于卓越的数据编码而引起的工业应用。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
量子计算机是下一代设备,有望执行超出古典计算机范围的计算。实现这一目标的主要方法是通过量子机学习,尤其是量子生成学习。由于量子力学的固有概率性质,因此可以合理地假设量子生成学习模型(QGLM)可能会超过其经典对应物。因此,QGLM正在从量子物理和计算机科学社区中受到越来越多的关注,在这些QGLM中,可以在近期量子机上有效实施各种QGLM,并提出了潜在的计算优势。在本文中,我们从机器学习的角度回顾了QGLM的当前进度。特别是,我们解释了这些QGLM,涵盖了量子电路出生的机器,量子生成的对抗网络,量子玻尔兹曼机器和量子自动编码器,作为经典生成学习模型的量子扩展。在这种情况下,我们探讨了它们的内在关系及其根本差异。我们进一步总结了QGLM在常规机器学习任务和量子物理学中的潜在应用。最后,我们讨论了QGLM的挑战和进一步研究指示。
translated by 谷歌翻译
由于量子电路上的旋转组件,基于变异电路的某些量子神经网络可以被认为等于经典的傅立叶网络。另外,它们可用于预测连续函数的傅立叶系数。时间序列数据表示时间变量的状态。由于某些时间序列数据也可以视为连续功能,因此我们可以期望量子机学习模型能够在时间序列数据上成功执行许多数据分析任务。因此,重要的是研究用于时间数据处理的新量子逻辑并分析量子计算机上数据的内在关系。在本文中,我们通过使用需要几个量子门的简单量子运算符,浏览经典数据预处理和对Arima模型进行预测的量子类似物。然后,我们讨论未来的方向和一些可用于量子计算机时间数据分析的工具/算法。
translated by 谷歌翻译
当我们继续找到当前可用的嘈杂设备比其经典配音具有优势的应用程序时,高效利用量子资源是非常可取的。提出了量子自动编码器的概念,是压缩量子信息以减少资源需求的一种方式。在这里,我们提出了一种使用进化算法来设计量子自动编码器的策略,以将量子信息转换为较低维表示。我们成功地证明了该算法在压缩量子状态的不同家族中的初始应用。特别是,我们指出,使用算法中的限制门设置可以有效地模拟生成的电路。这种方法可以使用更少的计算资源来使用经典逻辑来找到量子数据的低表示。
translated by 谷歌翻译