预计变形量子算法将展示量子计算在近期嘈杂量子计算机上的优点。然而,由于算法的大小增加,训练这种变分量子算法遭受梯度消失。以前的工作无法处理由现实量子硬件的必然噪声效应引起的渐变消失。在本文中,我们提出了一种新颖的培训方案,以减轻这种噪声引起的渐变消失。我们首先介绍一种新的成本函数,其中通过在截断的子空间中使用无意程可观察来显着增强梯度。然后,我们证明可以通过从新的成本函数与梯度优化原始成本函数来达到相同的最小值。实验表明,我们的新培训方案对于各种任务的主要变分量子算法非常有效。
translated by 谷歌翻译
预计变形量子算法将展示量子计算在近期嘈杂量子计算机上的优点。然而,由于算法的大小增加,训练这种变分量子算法遭受梯度消失。以前的工作无法处理由现实量子硬件的必然噪声效应引起的渐变消失。在本文中,我们提出了一种新颖的培训方案,以减轻这种噪声引起的渐变消失。我们首先介绍一种新的成本函数,其中通过在截断的子空间中使用无意程可观察来显着增强梯度。然后,我们证明可以通过从新的成本函数与梯度优化原始成本函数来达到相同的最小值。实验表明,我们的新培训方案对于各种任务的主要变分量子算法非常有效。
translated by 谷歌翻译
变异量子算法(VQA)在NISQ时代表现出巨大的潜力。在VQA的工作流程中,Ansatz的参数迭代更新以近似所需的量子状态。我们已经看到了各种努力,以较少的大门起草更好的安萨兹。在量子计算机中,栅极Ansatz最终将转换为控制信号,例如TransMons上的微波脉冲。并且对照脉冲需要精心校准,以最大程度地减少误差(例如过度旋转和旋转)。在VQA的情况下,此过程将引入冗余,但是VQAS的变异性能自然可以通过更新幅度和频率参数来处理过度旋转和重组的问题。因此,我们提出了PAN,这是一种用于VQA的天然脉冲ANSATZ GENTARATOR框架。我们生成具有可训练参数用于振幅和频率的天然脉冲ansatz。在我们提出的锅中,我们正在调整参数脉冲,这些脉冲在NISQ计算机上得到了内在支持。考虑到本机 - 脉冲ANSATZ不符合参数迁移规则,我们需要部署非级别优化器。为了限制发送到优化器的参数数量,我们采用了一种生成本机 - 脉冲ANSATZ的渐进式方式。实验是在模拟器和量子设备上进行的,以验证我们的方法。当在NISQ机器上采用时,PAN获得的延迟平均提高了86%。 PAN在H2和HEH+上的VQE任务分别能够达到99.336%和96.482%的精度,即使NISQ机器中有很大的噪声。
translated by 谷歌翻译
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years. However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number. This result leads to a general standpoint that deep quantum circuits would not be feasible for practical tasks. In this work, we propose an initialization strategy with theoretical guarantees for the vanishing gradient problem in general deep quantum circuits. Specifically, we prove that under proper Gaussian initialized parameters, the norm of the gradient decays at most polynomially when the qubit number and the circuit depth increase. Our theoretical results hold for both the local and the global observable cases, where the latter was believed to have vanishing gradients even for very shallow circuits. Experimental results verify our theoretical findings in the quantum simulation and quantum chemistry.
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
For a large number of tasks, quantum computing demonstrates the potential for exponential acceleration over classical computing. In the NISQ era, variable-component subcircuits enable applications of quantum computing. To reduce the inherent noise and qubit size limitations of quantum computers, existing research has improved the accuracy and efficiency of Variational Quantum Algorithm (VQA). In this paper, we explore the various ansatz improvement methods for VQAs at the gate level and pulse level, and classify, evaluate and summarize them.
translated by 谷歌翻译
探索近期量子设备的量子应用是具有理论和实际利益的量子信息科学的快速增长领域。建立这种近期量子应用的领先范式是变异量子算法(VQAS)。这些算法使用经典优化器来训练参数化的量子电路以完成某些任务,其中电路通常是随机初始初始初始化的。在这项工作中,我们证明,对于一系列此类随机电路,成本函数的变化范围通过调整电路中的任何局部量子门在具有很高概率的Qubits数量中呈指数级消失。该结果可以自然地统一对基于梯度和无梯度的优化的限制,并揭示对VQA的训练景观的额外严格限制。因此,对VQA的训练性的基本限制是拆开的,这表明具有指数尺寸的希尔伯特空间中优化硬度的基本机制。我们通过代表性VQA的数值模拟进一步展示了结果的有效性。我们认为,这些结果将加深我们对VQA的可扩展性的理解,并阐明了搜索具有优势的近期量子应用程序。
translated by 谷歌翻译
关于参数化量子电路(PQC)的成本景观知之甚少。然而,PQC被用于量子神经网络和变异量子算法中,这可能允许近期量子优势。此类应用需要良好的优化器来培训PQC。最近的作品集中在专门针对PQC量身定制的量子意识优化器上。但是,对成本景观的无知可能会阻碍这种优化者的进步。在这项工作中,我们在分析上证明了PQC的两个结果:(1)我们在PQC中发现了指数较大的对称性,在成本景观中产生了最小值的呈指数较大的变性。或者,这可以作为相关超参数空间体积的指数减少。 (2)我们研究了噪声下对称性的弹性,并表明,尽管它在Unital噪声下是保守的,但非阴道通道可以打破这些对称性并提高最小值的变性,从而导致多个新的局部最小值。基于这些结果,我们引入了一种称为基于对称的最小跳跃(SYMH)的优化方法,该方法利用了PQC中的基础对称性。我们的数值模拟表明,在存在与当前硬件相当的水平上,SYMH在存在非阴性噪声的情况下提高了整体优化器性能。总体而言,这项工作从局部门转换中得出了大规模电路对称性,并使用它们来构建一种噪声吸引的优化方法。
translated by 谷歌翻译
Quantum Machine Learning(QML)提供了一种强大的灵活的范式,可用于编程近期量子计算机,具有化学,计量,材料科学,数据科学和数学的应用。这里,一个以参数化量子电路的形式训练ANSATZ,以实现感兴趣的任务。然而,最近出现了挑战表明,由于随机性或硬件噪声引起的平坦训练景观,因此难以训练深度尖锐钽。这激励了我们的工作,在那里我们提出了一种可变的结构方法来构建QML的Ansatzes。我们的方法称为VANS(可变ANSATZ),将一组规则应用于在优化期间以知识的方式在增长和(至关重要的)中删除量子门。因此,VANS非常适合通过保持ANSATZ浅扫描来缓解训练性和与噪声相关的问题。我们在变分量子Eigensolver中使用Vans进行冷凝物质和量子化学应用,并且还在量子自身化学器中进行数据压缩,显示所有情况的成功结果。
translated by 谷歌翻译
变形量子算法(VQAS)可以是噪声中间级量子(NISQ)计算机上的量子优势的路径。自然问题是NISQ设备的噪声是否对VQA性能的基本限制。我们严格证明对嘈杂的VQAS进行严重限制,因为噪音导致训练景观具有贫瘠高原(即消失梯度)。具体而言,对于考虑的本地Pauli噪声,我们证明梯度在Qubits $ N $的数量中呈指数呈指数增长,如果Ansatz的深度以$ N $线性增长。这些噪声诱导的贫瘠强韧(NIBPS)在概念上不同于无辐射贫瘠强度,其与随机参数初始化相关联。我们的结果是为通用Ansatz制定的,该通用ansatz包括量子交替运算符ANSATZ和酉耦合簇Ansatz等特殊情况。对于前者来说,我们的数值启发式展示了用于现实硬件噪声模型的NIBP现象。
translated by 谷歌翻译
有望在近期量子计算机上建立有价值的应用程序。但是,最近的作品指出,VQA的性能极大地依赖于Ansatzes的表现性,并且受到优化问题(例如贫瘠的高原(即消失的梯度))的严重限制。这项工作提出了国家有效的ANSATZ(SEA),以改善训练性,以进行准确的基态制备。我们表明,海洋可以产生一个任意纯状态,其参数比通用的安萨兹少得多,从而使其适合基态估计等任务有效。然后,我们证明可以通过灵活地调节海洋的纠缠能力来有效地通过海洋有效地减轻贫瘠的高原,并可以最大程度地提高训练性。最后,我们研究了大量的示例,在基础状态估计中,我们在成本梯度和收敛速度的幅度上得到了显着改善。
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
The emergence of variational quantum applications has led to the development of automatic differentiation techniques in quantum computing. Recently, Zhu et al. (PLDI 2020) have formulated differentiable quantum programming with bounded loops, providing a framework for scalable gradient calculation by quantum means for training quantum variational applications. However, promising parameterized quantum applications, e.g., quantum walk and unitary implementation, cannot be trained in the existing framework due to the natural involvement of unbounded loops. To fill in the gap, we provide the first differentiable quantum programming framework with unbounded loops, including a newly designed differentiation rule, code transformation, and their correctness proof. Technically, we introduce a randomized estimator for derivatives to deal with the infinite sum in the differentiation of unbounded loops, whose applicability in classical and probabilistic programming is also discussed. We implement our framework with Python and Q#, and demonstrate a reasonable sample efficiency. Through extensive case studies, we showcase an exciting application of our framework in automatically identifying close-to-optimal parameters for several parameterized quantum applications.
translated by 谷歌翻译
作为量子优势的应用,对动态模拟和量子机学习(QML)的关注很大,而使用QML来增强动态模拟的可能性尚未得到彻底研究。在这里,我们开发了一个框架,用于使用QML方法模拟近期量子硬件上的量子动力学。我们使用概括范围,即机器学习模型在看不见的数据上遇到的错误,以严格分析此框架内算法的训练数据要求。这提供了一种保证,就量子和数据要求而言,我们的算法是资源有效的。我们的数字具有问题大小的有效缩放,我们模拟了IBMQ-Bogota上的Trotterization的20倍。
translated by 谷歌翻译
量子Gibbs状态的制备是量子计算的重要组成部分,在各种区域具有广泛的应用,包括量子仿真,量子优化和量子机器学习。在本文中,我们提出了用于量子吉布斯状态准备的变分杂化量子典型算法。我们首先利用截短的泰勒系列来评估自由能,并选择截短的自由能量作为损耗功能。然后,我们的协议训练参数化量子电路以学习所需的量子吉布斯状态。值得注意的是,该算法可以在配备有参数化量子电路的近期量子计算机上实现。通过执行数值实验,我们显示浅参数化电路,只有一个额外的量子位训练,以便准备诸如高于95%的保真度的insing链和旋转链Gibbs状态。特别地,对于ising链模型,我们发现,只有一个参数和一个额外的qubit的简化电路ansatz可以训练,以在大于2的逆温度下实现吉布斯状态准备中的99%保真度。
translated by 谷歌翻译
量子计算机对机器学习应用程序保持前所未有的潜力。在这里,我们证明了物理量子电路通过经验风险最小化在量子计算机上可读的PAC(可能近似正确):以最多为最多$ N ^ C $栅极的参数量子电路,每个门作用于恒定数量的Qubits,样本复杂度被$ \ tilde {o}界限为(n ^ {c + 1})$。特别是,我们明确地构建了一种以固定模式排列的$ O(n ^ {c + 1})$ o(n ^ {c + 1})的变形量子电路系列,其可以代表最多$ n ^ c $基本的所有物理量子电路盖茨。我们的结果为大量机器学习提供了一个有价值的理论和实践。
translated by 谷歌翻译
近期量子系统嘈杂。串扰噪声已被确定为超导噪声中间尺度量子(NISQ)设备的主要噪声来源之一。串扰源于附近Qubits上的两Q量门门的并发执行,例如\ texttt {cx}。与单独运行相比,它可能会大大提高门的错误率。可以通过调度或硬件调整来减轻串扰。然而,先前的研究在汇编的后期很晚,通常是在完成硬件映射之后的。它可能会错过优化算法逻辑,路由和串扰的巨大机会。在本文中,我们通过在早期编译阶段同时考虑所有这些因素来推动信封。我们提出了一个称为CQC的串扰感知量子程序汇编框架,该框架可以增强串扰缓解,同时实现令人满意的电路深度。此外,我们确定了从中间表示向电路转换的机会,例如,以特定的特定串扰缓解措施,例如,\ texttt {cx}梯子构造在变异的量子eigensolvers(VQE)中。通过模拟和Real IBM-Q设备进行评估表明,我们的框架可以显着将错误率降低6 $ \ times $,而与最先进的门调度相比,仅$ \ sim $ 60 \%\%的电路深度方法。特别是对于VQE,我们使用IBMQ Guadalupe证明了49 \%的回路深度减少,而对H4分子的先前ART进行了9.6 \%的保真度改善。我们的CQC框架将在GitHub上发布。
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译
现代量子机学习(QML)方法涉及在训练数据集上进行各种优化参数化量子电路,并随后对测试数据集(即,泛化)进行预测。在这项工作中,我们在培训数量为N $培训数据点后,我们在QML中对QML的普遍表现进行了全面的研究。我们表明,Quantum机器学习模型的泛化误差与$ T $培训门的尺寸在$ \ sqrt {t / n} $上缩放。当只有$ k \ ll t $ gates在优化过程中经历了大量变化时,我们证明了泛化误差改善了$ \ sqrt {k / n} $。我们的结果意味着将Unitaries编制到通常使用指数训练数据的量子计算行业的多项式栅极数量,这是一项通常使用指数尺寸训练数据的大量应用程序。我们还表明,使用量子卷积神经网络的相位过渡的量子状态的分类只需要一个非常小的训练数据集。其他潜在应用包括学习量子误差校正代码或量子动态模拟。我们的工作将新的希望注入QML领域,因为较少的培训数据保证了良好的概括。
translated by 谷歌翻译
变异量子算法已被认为是实现有意义的任务(包括机器学习和组合优化)的近期量子优势的领先策略。当应用于涉及经典数据的任务时,这种算法通常从用于数据编码的量子电路开始,然后训练量子神经网络(QNN)以最小化目标函数。尽管已经广泛研究了QNN,以提高这些算法在实际任务上的性能,但系统地了解编码数据对最终性能的影响存在差距。在本文中,我们通过考虑基于参数化量子电路的常见数据编码策略来填补这一空白。我们证明,在合理的假设下,平均编码状态与最大混合状态之间的距离可以明确地相对于编码电路的宽度和深度。该结果特别意味着平均编码状态将以指数速度的深度速度集中在最大混合状态上。这种浓度严重限制了量子分类器的功能,并严格限制了从量子信息的角度来看编码状态的区分性。我们通过在合成和公共数据集上验证这些结果来进一步支持我们的发现。我们的结果突出了机器学习任务中量子数据编码的重要性,并可能阐明未来的编码策略。
translated by 谷歌翻译