这项工作与科学机器学习中的以下基本问题有关:基于深度学习的方法是否可以解决无噪声逆问题到近乎完美的准确性?首次提供了积极的证据,重点是原型计算机断层扫描(CT)设置。我们证明,迭代的端到端网络方案可以实现接近数值精度的重建,与经典的压缩传感策略相当。我们的结果是基于我们对最近的AAPM DL-SPARSE-VIEW CT挑战的获胜提交的基础。它的目标是确定用数据驱动技术解决稀疏视图CT逆问题的最新技术。挑战设置的特定困难是,参与者的精确前进模型仍然未知。因此,我们方法的关键特征是最初在数据驱动的校准步骤中估算未知的粉丝几何形状。除了对我们的方法的深入分析外,我们还证明了其在开放式现实世界数据集Lodopab CT上的最先进性能。
translated by 谷歌翻译
光子计数CT(PCCT)通过更好的空间和能量分辨率提供了改进的诊断性能,但是开发可以处理这些大数据集的高质量图像重建方法是具有挑战性的。基于模型的解决方案结合了物理采集的模型,以重建更准确的图像,但取决于准确的前向操作员,并在寻找良好的正则化方面遇到困难。另一种方法是深度学习的重建,这在CT中表现出了巨大的希望。但是,完全数据驱动的解决方案通常需要大量的培训数据,并且缺乏解释性。为了结合两种方法的好处,同时最大程度地降低了各自的缺点,希望开发重建算法,以结合基于模型和数据驱动的方法。在这项工作中,我们基于展开/展开的迭代网络提出了一种新颖的深度学习解决方案,用于PCCT中的材料分解。我们评估了两种情况:一种学识渊博的后处理,隐含地利用了模型知识,以及一种学到的梯度,该梯度在体系结构中具有明确的基于模型的组件。借助我们提出的技术,我们解决了一个具有挑战性的PCCT模拟情况:低剂量,碘对比度和很小的训练样品支持的腹部成像中的三材料分解。在这种情况下,我们的方法的表现优于最大似然估计,一种变异方法以及一个完整的网络。
translated by 谷歌翻译
CT和MRI是两种广泛使用的临床成像方式,用于非侵入性诊断。然而,这两种方式都有一定的问题。 CT使用有害电离辐射,MRI患有缓慢的采集速度。欠采样可以解决这两个问题,例如稀疏抽样。然而,这种向下采样的数据导致降低分辨率并引入人工制品。已经提出了几种技术,包括基于深度的学习方法,以重建此类数据。然而,这两个方式的欠采样重建问题总是被认为是两个不同的问题,并通过不同的研究工作分开解决。本文通过在径向MRI上应用傅立叶变换的预处理来实现稀疏CT和缺口MRI重建的统一解决方案,然后使用SCOMAGE ups采样与滤波后投影结合使用SCOMAGE Cups采样来实现的基于傅里叶变换的预处理。原始网络是一种基于深度学习的方法,用于重建稀疏采样的CT数据。本文介绍了原始 - 双工UNET,从精度和重建速度方面提高了原始双网络。所提出的方法导致平均SSSIM为0.932,同时对风扇束几何进行稀疏CT重建,其稀疏水平为16,实现了对先前模型的统计上显着的改进,这导致0.919。此外,所提出的模型导致0.903和0.957平均SSIM,同时重建具有16-统计上显着改善的加速因子,在原始模型上重建了缺乏采样的脑和腹部MRI数据,这导致0.867和0.949。最后,本文表明,所提出的网络不仅提高了整体图像质量,而且还提高了兴趣区域的图像质量;以及在针的存在下更好地推广。
translated by 谷歌翻译
近年来,深度学习在图像重建方面取得了显着的经验成功。这已经促进了对关键用例中数据驱动方法的正确性和可靠性的精确表征的持续追求,例如在医学成像中。尽管基于深度学习的方法具有出色的性能和功效,但对其稳定性或缺乏稳定性的关注以及严重的实际含义。近年来,已经取得了重大进展,以揭示数据驱动的图像恢复方法的内部运作,从而挑战了其广泛认为的黑盒本质。在本文中,我们将为数据驱动的图像重建指定相关的融合概念,该概念将构成具有数学上严格重建保证的学习方法调查的基础。强调的一个例子是ICNN的作用,提供了将深度学习的力量与经典凸正则化理论相结合的可能性,用于设计被证明是融合的方法。这篇调查文章旨在通过提供对数据驱动的图像重建方法以及从业人员的理解,旨在通过提供可访问的融合概念的描述,并通过将一些现有的经验实践放在可靠的数学上,来推进我们对数据驱动图像重建方法的理解以及从业人员的了解。基础。
translated by 谷歌翻译
基于深度学习的解决方案正在为各种应用程序成功实施。最值得注意的是,临床用例已增加了兴趣,并且是过去几年提出的一些尖端数据驱动算法背后的主要驱动力。对于诸如稀疏视图重建等应用,其中测量数据的量很少,以使获取时间短而且辐射剂量较低,降低了串联的伪像,促使数据驱动的DeNoINEDENO算法的开发,其主要目标是获得获得的主要目标。只有一个全扫描数据的子集诊断可行的图像。我们提出了WNET,这是一个数据驱动的双域denoising模型,其中包含用于稀疏视图deNoising的可训练的重建层。两个编码器 - 模型网络同时在正式和重建域中执行deno,而实现过滤后的反向投影算法的第三层则夹在前两种之间,并照顾重建操作。我们研究了该网络在稀疏视图胸部CT扫描上的性能,并突出显示了比更传统的固定层具有可训练的重建层的额外好处。我们在两个临床相关的数据集上训练和测试我们的网络,并将获得的结果与三种不同类型的稀疏视图CT CT DeNoisis和重建算法进行了比较。
translated by 谷歌翻译
We propose a deep learning method for three-dimensional reconstruction in low-dose helical cone-beam computed tomography. We reconstruct the volume directly, i.e., not from 2D slices, guaranteeing consistency along all axes. In a crucial step beyond prior work, we train our model in a self-supervised manner in the projection domain using noisy 2D projection data, without relying on 3D reference data or the output of a reference reconstruction method. This means the fidelity of our results is not limited by the quality and availability of such data. We evaluate our method on real helical cone-beam projections and simulated phantoms. Our reconstructions are sharper and less noisy than those of previous methods, and several decibels better in quantitative PSNR measurements. When applied to full-dose data, our method produces high-quality results orders of magnitude faster than iterative techniques.
translated by 谷歌翻译
在计算机断层扫描成像的实际应用中,投影数据可以在有限角度范围内获取,并由于扫描条件的限制而被噪声损坏。嘈杂的不完全投影数据导致反问题的不良性。在这项工作中,我们从理论上验证了低分辨率重建问题的数值稳定性比高分辨率问题更好。在接下来的内容中,提出了一个新型的低分辨率图像先验的CT重建模型,以利用低分辨率图像来提高重建质量。更具体地说,我们在下采样的投影数据上建立了低分辨率重建问题,并将重建的低分辨率图像作为原始限量角CT问题的先验知识。我们通过交替的方向方法与卷积神经网络近似的所有子问题解决了约束最小化问题。数值实验表明,我们的双分辨率网络在嘈杂的有限角度重建问题上的变异方法和流行的基于学习的重建方法都优于变异方法。
translated by 谷歌翻译
基于深度学习的图像重建方法在许多成像方式中表现出令人印象深刻的经验表现。这些方法通常需要大量的高质量配对训练数据,这在医学成像中通常不可用。为了解决这个问题,我们为贝叶斯框架内的学习重建提供了一种新颖的无监督知识转移范式。提出的方法分为两个阶段学习重建网络。第一阶段训练一个重建网络,其中包括一组有序对,包括椭圆的地面真相图像和相应的模拟测量数据。第二阶段微调在没有监督的情况下将经过验证的网络用于更现实的测量数据。通过构造,该框架能够通过重建图像传递预测性不确定性信息。我们在低剂量和稀疏视图计算机断层扫描上提出了广泛的实验结果,表明该方法与几种最先进的监督和无监督的重建技术具有竞争力。此外,对于与培训数据不同的测试数据,与仅在合成数据集中训练的学习方法相比,所提出的框架不仅在视觉上可以显着提高重建质量,而且在PSNR和SSIM方面也可以显着提高重建质量。
translated by 谷歌翻译
Countless signal processing applications include the reconstruction of signals from few indirect linear measurements. The design of effective measurement operators is typically constrained by the underlying hardware and physics, posing a challenging and often even discrete optimization task. While the potential of gradient-based learning via the unrolling of iterative recovery algorithms has been demonstrated, it has remained unclear how to leverage this technique when the set of admissible measurement operators is structured and discrete. We tackle this problem by combining unrolled optimization with Gumbel reparametrizations, which enable the computation of low-variance gradient estimates of categorical random variables. Our approach is formalized by GLODISMO (Gradient-based Learning of DIscrete Structured Measurement Operators). This novel method is easy-to-implement, computationally efficient, and extendable due to its compatibility with automatic differentiation. We empirically demonstrate the performance and flexibility of GLODISMO in several prototypical signal recovery applications, verifying that the learned measurement matrices outperform conventional designs based on randomization as well as discrete optimization baselines.
translated by 谷歌翻译
Deep neural networks provide unprecedented performance gains in many real world problems in signal and image processing. Despite these gains, future development and practical deployment of deep networks is hindered by their blackbox nature, i.e., lack of interpretability, and by the need for very large training sets. An emerging technique called algorithm unrolling or unfolding offers promise in eliminating these issues by providing a concrete and systematic connection between iterative algorithms that are used widely in signal processing and deep neural networks. Unrolling methods were first proposed to develop fast neural network approximations for sparse coding. More recently, this direction has attracted enormous attention and is rapidly growing both in theoretic investigations and practical applications. The growing popularity of unrolled deep networks is due in part to their potential in developing efficient, high-performance and yet interpretable network architectures from reasonable size training sets. In this article, we review algorithm unrolling for signal and image processing. We extensively cover popular techniques for algorithm unrolling in various domains of signal and image processing including imaging, vision and recognition, and speech processing. By reviewing previous works, we reveal the connections between iterative algorithms and neural networks and present recent theoretical results. Finally, we provide a discussion on current limitations of unrolling and suggest possible future research directions.
translated by 谷歌翻译
最近在图像重建之前被引入了深度图像。它表示要作为深度卷积神经网络的输出恢复的图像,并学习网络的参数,使得输出适合损坏的观察。尽管它令人印象深刻的重建属性,但与学到的学习或传统的重建技术相比,该方法缓慢。我们的工作开发了一个两阶段学习范式来解决计算挑战:(i)我们在合成数据集上执行网络的监督预测;(ii)我们微调网络的参数,以适应目标重建。我们展示了预先预测的预测,从实际测量的生物样本的实际微型计算机断层扫描数据中提高了随后的重建。代码和附加实验材料可在https://educateddip.github.io/docs.educated_deep_image_prior/处获得。
translated by 谷歌翻译
本文涉及从由此产生的刻薄的单个图像重建折射物体形状的高度挑战性问题。由于日常生活中透明折射物体的难以达到透明折射物体,其形状的重建需要多种实际应用。最近从焦散(SFC)方法的形状作为用于合成苛性图像的光传播仿真的问题,这可以通过可微分的渲染器来解决。然而,通过折射表面的光传输的固有复杂性当前限制了相对于重建速度和鲁棒性的实用性。为了解决这些问题,我们从焦散(N-SFC)引入神经形状,这是一种基于学习的扩展,将两个组件包含在重建管道中:一个去噪模块,该模块减轻了光传输模拟的计算成本和优化基于学习梯度下降的过程,它可以使用较少的迭代来更好地收敛。广泛的实验证明了我们的神经扩展在3D玻璃印刷中质量控制的情况下的有效性,在那里我们在计算速度和最终表面误差方面显着优于当前最先进的。
translated by 谷歌翻译
Neural networks have recently allowed solving many ill-posed inverse problems with unprecedented performance. Physics informed approaches already progressively replace carefully hand-crafted reconstruction algorithms in real applications. However, these networks suffer from a major defect: when trained on a given forward operator, they do not generalize well to a different one. The aim of this paper is twofold. First, we show through various applications that training the network with a family of forward operators allows solving the adaptivity problem without compromising the reconstruction quality significantly. Second, we illustrate that this training procedure allows tackling challenging blind inverse problems. Our experiments include partial Fourier sampling problems arising in magnetic resonance imaging (MRI), computerized tomography (CT) and image deblurring.
translated by 谷歌翻译
本文解决了利益区域(ROI)计算机断层扫描(CT)的图像重建问题。尽管基于模型的迭代方法可用于此问题,但由于乏味的参数化和缓慢的收敛性,它们的实用性通常受到限制。另外,当保留的先验不完全适合溶液空间时,可以获得不足的溶液。深度学习方法提供了一种快速的替代方法,从大型数据集中利用信息,因此可以达到高重建质量。但是,这些方法通常依赖于不考虑成像系统物理学的黑匣子,而且它们缺乏可解释性通常会感到沮丧。在两种方法的十字路口,最近都提出了展开的深度学习技术。它们将模型的物理和迭代优化算法纳入神经网络设计中,从而在各种应用中均具有出色的性能。本文介绍了一种新颖的,展开的深度学习方法,称为U-RDBFB,为ROI CT重建而设计为有限的数据。由于强大的非凸数据保真功能与稀疏性诱导正则化功能相结合,因此有效地处理了很少的截断数据。然后,嵌入在迭代重新加权方案中的块双重前向(DBFB)算法的迭代将在神经网络体系结构上展开,从而以监督的方式学习各种参数。我们的实验显示了对各种最新方法的改进,包括基于模型的迭代方案,深度学习体系结构和深度展开的方法。
translated by 谷歌翻译
近年来,在诸如denoing,压缩感应,介入和超分辨率等反问题中使用深度学习方法的使用取得了重大进展。尽管这种作品主要是由实践算法和实验驱动的,但它也引起了各种有趣的理论问题。在本文中,我们调查了这一作品中一些突出的理论发展,尤其是生成先验,未经训练的神经网络先验和展开算法。除了总结这些主题中的现有结果外,我们还强调了一些持续的挑战和开放问题。
translated by 谷歌翻译
物理驱动的深度学习方法已成为计算磁共振成像(MRI)问题的强大工具,将重建性能推向新限制。本文概述了将物理信息纳入基于学习的MRI重建中的最新发展。我们考虑了用于计算MRI的线性和非线性正向模型的逆问题,并回顾了解决这些方法的经典方法。然后,我们专注于物理驱动的深度学习方法,涵盖了物理驱动的损失功能,插件方法,生成模型和展开的网络。我们重点介绍了特定于领域的挑战,例如神经网络的实现和复杂值的构建基块,以及具有线性和非线性正向模型的MRI转换应用。最后,我们讨论常见问题和开放挑战,并与物理驱动的学习与医学成像管道中的其他下游任务相结合时,与物理驱动的学习的重要性联系在一起。
translated by 谷歌翻译
我们在凸优化和深度学习的界面上引入了一类新的迭代图像重建算法,以启发凸出和深度学习。该方法包括通过训练深神网络(DNN)作为Denoiser学习先前的图像模型,并将其替换为优化算法的手工近端正则操作员。拟议的airi(``````````````''''')框架,用于成像复杂的强度结构,并从可见性数据中扩散和微弱的发射,继承了优化的鲁棒性和解释性,以及网络的学习能力和速度。我们的方法取决于三个步骤。首先,我们从光强度图像设计了一个低动态范围训练数据库。其次,我们以从数据的信噪比推断出的噪声水平来训练DNN Denoiser。我们使用训练损失提高了术语,可确保算法收敛,并通过指示进行即时数据库动态范围增强。第三,我们将学习的DeNoiser插入前向后的优化算法中,从而产生了一个简单的迭代结构,该结构与梯度下降的数据输入步骤交替出现Denoising步骤。我们已经验证了SARA家族的清洁,优化算法的AIRI,并经过DNN训练,可以直接从可见性数据中重建图像。仿真结果表明,AIRI与SARA及其基于前卫的版本USARA具有竞争力,同时提供了显着的加速。干净保持更快,但质量较低。端到端DNN提供了进一步的加速,但质量远低于AIRI。
translated by 谷歌翻译
In photoacoustic tomography (PAT) with flat sensor, we routinely encounter two types of limited data. The first is due to using a finite sensor and is especially perceptible if the region of interest is large relative to the sensor or located farther away from the sensor. In this paper, we focus on the second type caused by a varying sensitivity of the sensor to the incoming wavefront direction which can be modelled as binary i.e. by a cone of sensitivity. Such visibility conditions result, in the Fourier domain, in a restriction of both the image and the data to a bow-tie, akin to the one corresponding to the range of the forward operator. The visible wavefrontsets in image and data domains, are related by the wavefront direction mapping. We adapt the wedge restricted Curvelet decomposition, we previously proposed for the representation of the full PAT data, to separate the visible and invisible wavefronts in the image. We optimally combine fast approximate operators with tailored deep neural network architectures into efficient learned reconstruction methods which perform reconstruction of the visible coefficients and the invisible coefficients are learned from a training set of similar data.
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
在本文中,我们考虑使用Palentir在两个和三个维度中对分段常数对象的恢复和重建,这是相对于当前最新ART的显着增强的参数级别集(PALS)模型。本文的主要贡献是一种新的PALS公式,它仅需要一个单个级别的函数来恢复具有具有多个未知对比度的分段常数对象的场景。我们的模型比当前的多对抗性,多对象问题提供了明显的优势,所有这些问题都需要多个级别集并明确估计对比度大小。给定对比度上的上限和下限,我们的方法能够以任何对比度分布恢复对象,并消除需要知道给定场景中的对比度或其值的需求。我们提供了一个迭代过程,以找到这些空间变化的对比度限制。相对于使用径向基函数(RBF)的大多数PAL方法,我们的模型利用了非异型基函数,从而扩展了给定复杂性的PAL模型可以近似的形状类别。最后,Palentir改善了作为参数识别过程一部分所需的Jacobian矩阵的条件,因此通过控制PALS扩展系数的幅度来加速优化方法,固定基本函数的中心,以及参数映射到图像映射的唯一性,由新参数化提供。我们使用X射线计算机断层扫描,弥漫性光学断层扫描(DOT),Denoising,DeonConvolution问题的2D和3D变体证明了新方法的性能。应用于实验性稀疏CT数据和具有不同类型噪声的模拟数据,以进一步验证所提出的方法。
translated by 谷歌翻译