In photoacoustic tomography (PAT) with flat sensor, we routinely encounter two types of limited data. The first is due to using a finite sensor and is especially perceptible if the region of interest is large relative to the sensor or located farther away from the sensor. In this paper, we focus on the second type caused by a varying sensitivity of the sensor to the incoming wavefront direction which can be modelled as binary i.e. by a cone of sensitivity. Such visibility conditions result, in the Fourier domain, in a restriction of both the image and the data to a bow-tie, akin to the one corresponding to the range of the forward operator. The visible wavefrontsets in image and data domains, are related by the wavefront direction mapping. We adapt the wedge restricted Curvelet decomposition, we previously proposed for the representation of the full PAT data, to separate the visible and invisible wavefronts in the image. We optimally combine fast approximate operators with tailored deep neural network architectures into efficient learned reconstruction methods which perform reconstruction of the visible coefficients and the invisible coefficients are learned from a training set of similar data.
translated by 谷歌翻译
在本文中,我们考虑使用Palentir在两个和三个维度中对分段常数对象的恢复和重建,这是相对于当前最新ART的显着增强的参数级别集(PALS)模型。本文的主要贡献是一种新的PALS公式,它仅需要一个单个级别的函数来恢复具有具有多个未知对比度的分段常数对象的场景。我们的模型比当前的多对抗性,多对象问题提供了明显的优势,所有这些问题都需要多个级别集并明确估计对比度大小。给定对比度上的上限和下限,我们的方法能够以任何对比度分布恢复对象,并消除需要知道给定场景中的对比度或其值的需求。我们提供了一个迭代过程,以找到这些空间变化的对比度限制。相对于使用径向基函数(RBF)的大多数PAL方法,我们的模型利用了非异型基函数,从而扩展了给定复杂性的PAL模型可以近似的形状类别。最后,Palentir改善了作为参数识别过程一部分所需的Jacobian矩阵的条件,因此通过控制PALS扩展系数的幅度来加速优化方法,固定基本函数的中心,以及参数映射到图像映射的唯一性,由新参数化提供。我们使用X射线计算机断层扫描,弥漫性光学断层扫描(DOT),Denoising,DeonConvolution问题的2D和3D变体证明了新方法的性能。应用于实验性稀疏CT数据和具有不同类型噪声的模拟数据,以进一步验证所提出的方法。
translated by 谷歌翻译
In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyper parameter selection. The starting point of our work is the observation that unrolled iterative methods have the form of a CNN (filtering followed by point-wise non-linearity) when the normal operator (H * H, the adjoint of H times H) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill-posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 × 512 image on the GPU. K.H. Jin acknowledges the support from the "EPFL Fellows" fellowship program co-funded by Marie Curie from the European Unions Horizon 2020 Framework Programme for Research and Innovation under grant agreement 665667.
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
Existing deep-learning based tomographic image reconstruction methods do not provide accurate estimates of reconstruction uncertainty, hindering their real-world deployment. This paper develops a method, termed as the linearised deep image prior (DIP), to estimate the uncertainty associated with reconstructions produced by the DIP with total variation regularisation (TV). Specifically, we endow the DIP with conjugate Gaussian-linear model type error-bars computed from a local linearisation of the neural network around its optimised parameters. To preserve conjugacy, we approximate the TV regulariser with a Gaussian surrogate. This approach provides pixel-wise uncertainty estimates and a marginal likelihood objective for hyperparameter optimisation. We demonstrate the method on synthetic data and real-measured high-resolution 2D $\mu$CT data, and show that it provides superior calibration of uncertainty estimates relative to previous probabilistic formulations of the DIP. Our code is available at https://github.com/educating-dip/bayes_dip.
translated by 谷歌翻译
图像生物标准化倡议(IBSI)旨在通过标准化从图像中提取图像生物标志物(特征)的计算过程来提高射致研究的再现性。我们之前建立了169个常用特征的参考值,创建了标准的射频图像处理方案,并开发了用于垄断研究的报告指南。但是,若干方面没有标准化。在这里,我们提出了在射频中使用卷积图像过滤器的参考手册的初步版本。滤波器,例如高斯滤波器的小波或拉普拉斯,在强调特定图像特征(如边缘和Blob)中发挥重要组成部分。已发现从过滤滤波器响应图派生的功能可重复差。此参考手册构成了持续工作的基础,用于标准化卷积滤波器中的覆盖物中的持续工作,并在这项工作进行时更新。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
地震数据处理在很大程度上取决于物理驱动的反问题的解决方案。在存在不利的数据采集条件下(例如,源和/或接收器的规则或不规则的粗略采样),基本的反问题变得非常不适,需要先进的信息才能获得令人满意的解决方案。刺激性反演,再加上固定基础的稀疏转换,代表了许多处理任务的首选方法,因为其实施简单性并在各种采集方案中都成功地应用了成功应用。利用深神经网络找到复杂的多维矢量空间的紧凑表示的能力,我们建议训练自动编码器网络,以了解输入地震数据和代表性潜流歧管之间的直接映射。随后,训练有素的解码器被用作手头物理驱动的逆问题的非线性预处理。提供了各种地震处理任务的合成数据和现场数据,并且所提出的非线性,学习的转换被证明超过了固定基本的转换,并更快地收敛到所寻求的解决方案。
translated by 谷歌翻译
Lensless cameras are a class of imaging devices that shrink the physical dimensions to the very close vicinity of the image sensor by replacing conventional compound lenses with integrated flat optics and computational algorithms. Here we report a diffractive lensless camera with spatially-coded Voronoi-Fresnel phase to achieve superior image quality. We propose a design principle of maximizing the acquired information in optics to facilitate the computational reconstruction. By introducing an easy-to-optimize Fourier domain metric, Modulation Transfer Function volume (MTFv), which is related to the Strehl ratio, we devise an optimization framework to guide the optimization of the diffractive optical element. The resulting Voronoi-Fresnel phase features an irregular array of quasi-Centroidal Voronoi cells containing a base first-order Fresnel phase function. We demonstrate and verify the imaging performance for photography applications with a prototype Voronoi-Fresnel lensless camera on a 1.6-megapixel image sensor in various illumination conditions. Results show that the proposed design outperforms existing lensless cameras, and could benefit the development of compact imaging systems that work in extreme physical conditions.
translated by 谷歌翻译
The reconstruction of images from their corresponding noisy Radon transform is a typical example of an ill-posed linear inverse problem as arising in the application of computerized tomography (CT). As the (na\"{\i}ve) solution does not depend on the measured data continuously, regularization is needed to re-establish a continuous dependence. In this work, we investigate simple, but yet still provably convergent approaches to learning linear regularization methods from data. More specifically, we analyze two approaches: One generic linear regularization that learns how to manipulate the singular values of the linear operator in an extension of [1], and one tailored approach in the Fourier domain that is specific to CT-reconstruction. We prove that such approaches become convergent regularization methods as well as the fact that the reconstructions they provide are typically much smoother than the training data they were trained on. Finally, we compare the spectral as well as the Fourier-based approaches for CT-reconstruction numerically, discuss their advantages and disadvantages and investigate the effect of discretization errors at different resolutions.
translated by 谷歌翻译
We propose a deep learning method for three-dimensional reconstruction in low-dose helical cone-beam computed tomography. We reconstruct the volume directly, i.e., not from 2D slices, guaranteeing consistency along all axes. In a crucial step beyond prior work, we train our model in a self-supervised manner in the projection domain using noisy 2D projection data, without relying on 3D reference data or the output of a reference reconstruction method. This means the fidelity of our results is not limited by the quality and availability of such data. We evaluate our method on real helical cone-beam projections and simulated phantoms. Our reconstructions are sharper and less noisy than those of previous methods, and several decibels better in quantitative PSNR measurements. When applied to full-dose data, our method produces high-quality results orders of magnitude faster than iterative techniques.
translated by 谷歌翻译
仅使用少量数据学习神经网络是一个重要的研究主题,具有巨大的应用潜力。在本文中,我们介绍了基于归一化流量的成像中反问题的变异建模的常规化器。我们的常规器称为PatchNR,涉及在很少的图像的贴片上学习的正常流。特别是,培训独立于考虑的逆问题,因此可以将相同的正规化程序用于在同一类图像上作用的不同前向操作员。通过研究斑块的分布与整个图像类别的分布,我们证明我们的变分模型确实是一种地图方法。如果有其他监督信息,我们的模型可以推广到有条件的补丁。材料图像和低剂量或限量角度计算机断层扫描(CT)的层分辨率的数值示例表明,我们的方法在具有相似假设的方法之间提供了高质量的结果,但仅需要很少的数据。
translated by 谷歌翻译
基于深度学习的解决方案正在为各种应用程序成功实施。最值得注意的是,临床用例已增加了兴趣,并且是过去几年提出的一些尖端数据驱动算法背后的主要驱动力。对于诸如稀疏视图重建等应用,其中测量数据的量很少,以使获取时间短而且辐射剂量较低,降低了串联的伪像,促使数据驱动的DeNoINEDENO算法的开发,其主要目标是获得获得的主要目标。只有一个全扫描数据的子集诊断可行的图像。我们提出了WNET,这是一个数据驱动的双域denoising模型,其中包含用于稀疏视图deNoising的可训练的重建层。两个编码器 - 模型网络同时在正式和重建域中执行deno,而实现过滤后的反向投影算法的第三层则夹在前两种之间,并照顾重建操作。我们研究了该网络在稀疏视图胸部CT扫描上的性能,并突出显示了比更传统的固定层具有可训练的重建层的额外好处。我们在两个临床相关的数据集上训练和测试我们的网络,并将获得的结果与三种不同类型的稀疏视图CT CT DeNoisis和重建算法进行了比较。
translated by 谷歌翻译
本文解决了利益区域(ROI)计算机断层扫描(CT)的图像重建问题。尽管基于模型的迭代方法可用于此问题,但由于乏味的参数化和缓慢的收敛性,它们的实用性通常受到限制。另外,当保留的先验不完全适合溶液空间时,可以获得不足的溶液。深度学习方法提供了一种快速的替代方法,从大型数据集中利用信息,因此可以达到高重建质量。但是,这些方法通常依赖于不考虑成像系统物理学的黑匣子,而且它们缺乏可解释性通常会感到沮丧。在两种方法的十字路口,最近都提出了展开的深度学习技术。它们将模型的物理和迭代优化算法纳入神经网络设计中,从而在各种应用中均具有出色的性能。本文介绍了一种新颖的,展开的深度学习方法,称为U-RDBFB,为ROI CT重建而设计为有限的数据。由于强大的非凸数据保真功能与稀疏性诱导正则化功能相结合,因此有效地处理了很少的截断数据。然后,嵌入在迭代重新加权方案中的块双重前向(DBFB)算法的迭代将在神经网络体系结构上展开,从而以监督的方式学习各种参数。我们的实验显示了对各种最新方法的改进,包括基于模型的迭代方案,深度学习体系结构和深度展开的方法。
translated by 谷歌翻译
多光谱探测器的进步导致X射线计算机断层扫描(CT)的范式偏移。从这些检测器获取的光谱信息可用于提取感兴趣对象的体积材料成分图。如果已知材料及其光谱响应是先验的,则图像重建步骤相当简单。但是,如果他们不知道,则需要共同估计地图以及响应。频谱CT中的传统工作流程涉及执行卷重建,然后进行材料分解,反之亦然。然而,这些方法本身遭受了联合重建问题的缺陷。为了解决这个问题,我们提出了一种基于词典的联合重建和解密方法的光谱断层扫描(调整)。我们的配方依赖于形成CT中常见的材料的光谱签名词典以及对象中存在的材料数的先验知识。特别地,我们在空间材料映射,光谱词典和字典元素的材料的指示符方面对光谱体积线性分解。我们提出了一种记忆有效的加速交替的近端梯度方法,以找到所得到的Bi-convex问题的近似解。根据几种合成幻影的数值示范,我们观察到与其他最先进的方法相比,调整非常好。此外,我们解决了针对有限测量模式调整的鲁棒性。
translated by 谷歌翻译
These notes were compiled as lecture notes for a course developed and taught at the University of the Southern California. They should be accessible to a typical engineering graduate student with a strong background in Applied Mathematics. The main objective of these notes is to introduce a student who is familiar with concepts in linear algebra and partial differential equations to select topics in deep learning. These lecture notes exploit the strong connections between deep learning algorithms and the more conventional techniques of computational physics to achieve two goals. First, they use concepts from computational physics to develop an understanding of deep learning algorithms. Not surprisingly, many concepts in deep learning can be connected to similar concepts in computational physics, and one can utilize this connection to better understand these algorithms. Second, several novel deep learning algorithms can be used to solve challenging problems in computational physics. Thus, they offer someone who is interested in modeling a physical phenomena with a complementary set of tools.
translated by 谷歌翻译
我们提出了一种监督学习稀疏促进正规化器的方法,以降低信号和图像。促进稀疏性正则化是解决现代信号重建问题的关键要素。但是,这些正规化器的基础操作员通常是通过手动设计的,要么以无监督的方式从数据中学到。监督学习(主要是卷积神经网络)在解决图像重建问题方面的最新成功表明,这可能是设计正规化器的富有成果的方法。为此,我们建议使用带有参数,稀疏的正规器的变异公式来贬低信号,其中学会了正常器的参数,以最大程度地减少在地面真实图像和测量对的训练集中重建的平均平方误差。培训涉及解决一个具有挑战性的双层优化问题;我们使用denoising问题的封闭形式解决方案得出了训练损失梯度的表达,并提供了随附的梯度下降算法以最大程度地减少其。我们使用结构化1D信号和自然图像的实验表明,所提出的方法可以学习一个超过众所周知的正规化器(总变化,DCT-SPARSITY和无监督的字典学习)的操作员和用于DeNoisis的协作过滤。尽管我们提出的方法是特定于denoising的,但我们认为它可以适应线性测量模型的较大类反问题,使其在广泛的信号重建设置中适用。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
最近在图像重建之前被引入了深度图像。它表示要作为深度卷积神经网络的输出恢复的图像,并学习网络的参数,使得输出适合损坏的观察。尽管它令人印象深刻的重建属性,但与学到的学习或传统的重建技术相比,该方法缓慢。我们的工作开发了一个两阶段学习范式来解决计算挑战:(i)我们在合成数据集上执行网络的监督预测;(ii)我们微调网络的参数,以适应目标重建。我们展示了预先预测的预测,从实际测量的生物样本的实际微型计算机断层扫描数据中提高了随后的重建。代码和附加实验材料可在https://educateddip.github.io/docs.educated_deep_image_prior/处获得。
translated by 谷歌翻译
Neural networks have recently allowed solving many ill-posed inverse problems with unprecedented performance. Physics informed approaches already progressively replace carefully hand-crafted reconstruction algorithms in real applications. However, these networks suffer from a major defect: when trained on a given forward operator, they do not generalize well to a different one. The aim of this paper is twofold. First, we show through various applications that training the network with a family of forward operators allows solving the adaptivity problem without compromising the reconstruction quality significantly. Second, we illustrate that this training procedure allows tackling challenging blind inverse problems. Our experiments include partial Fourier sampling problems arising in magnetic resonance imaging (MRI), computerized tomography (CT) and image deblurring.
translated by 谷歌翻译