现有的离线增强学习(RL)方法面临一些主要挑战,尤其是学识渊博的政策与行为政策之间的分配转变。离线Meta-RL正在成为应对这些挑战的一种有前途的方法,旨在从一系列任务中学习信息丰富的元基础。然而,如我们的实证研究所示,离线元RL在具有良好数据集质量的任务上的单个任务RL方法可能胜过,这表明必须在“探索”不合时宜的情况下进行精细的平衡。通过遵循元元素和“利用”离线数据集的分配状态行为,保持靠近行为策略。通过这种经验分析的激励,我们探索了基于模型的离线元RL,并具有正则政策优化(MERPO),该策略优化(MERPO)学习了一种用于有效任务结构推理的元模型,并提供了提供信息的元元素,以安全地探索过分分布状态 - 行为。特别是,我们使用保守的政策评估和正规政策改进,设计了一种新的基于元指数的基于元指数的基于元模型的参与者批判性(RAC),作为MERPO的关键构建块作为Merpo的关键构建块;而其中的内在权衡是通过在两个正规机构之间达到正确的平衡来实现的,一个是基于行为政策,另一个基于元政策。从理论上讲,我们学识渊博的政策可以保证对行为政策和元政策都有保证的改进,从而确保通过离线元RL对新任务的绩效提高。实验证实了Merpo优于现有的离线META-RL方法的出色性能。
translated by 谷歌翻译
离线增强学习(RL)定义了从静态记录数据集学习的任务,而无需与环境不断交互。学识渊博的政策与行为政策之间的分配变化使得价值函数必须保持保守,以使分布(OOD)的动作不会被严重高估。但是,现有的方法,对看不见的行为进行惩罚或与行为政策进行正规化,太悲观了,这抑制了价值功能的概括并阻碍了性能的提高。本文探讨了温和但足够的保守主义,可以在线学习,同时不损害概括。我们提出了轻度保守的Q学习(MCQ),其中通过分配了适当的伪Q值来积极训练OOD。从理论上讲,我们表明MCQ诱导了至少与行为策略的行为,并且对OOD行动不会发生错误的高估。 D4RL基准测试的实验结果表明,与先前的工作相比,MCQ取得了出色的性能。此外,MCQ在从离线转移到在线时显示出卓越的概括能力,并明显胜过基准。
translated by 谷歌翻译
Effectively leveraging large, previously collected datasets in reinforcement learning (RL) is a key challenge for large-scale real-world applications. Offline RL algorithms promise to learn effective policies from previously-collected, static datasets without further interaction. However, in practice, offline RL presents a major challenge, and standard off-policy RL methods can fail due to overestimation of values induced by the distributional shift between the dataset and the learned policy, especially when training on complex and multi-modal data distributions. In this paper, we propose conservative Q-learning (CQL), which aims to address these limitations by learning a conservative Q-function such that the expected value of a policy under this Q-function lower-bounds its true value. We theoretically show that CQL produces a lower bound on the value of the current policy and that it can be incorporated into a policy learning procedure with theoretical improvement guarantees. In practice, CQL augments the standard Bellman error objective with a simple Q-value regularizer which is straightforward to implement on top of existing deep Q-learning and actor-critic implementations. On both discrete and continuous control domains, we show that CQL substantially outperforms existing offline RL methods, often learning policies that attain 2-5 times higher final return, especially when learning from complex and multi-modal data distributions.Preprint. Under review.
translated by 谷歌翻译
Offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data. This problem setting offers the promise of utilizing such datasets to acquire policies without any costly or dangerous active exploration. However, it is also challenging, due to the distributional shift between the offline training data and those states visited by the learned policy. Despite significant recent progress, the most successful prior methods are model-free and constrain the policy to the support of data, precluding generalization to unseen states. In this paper, we first observe that an existing model-based RL algorithm already produces significant gains in the offline setting compared to model-free approaches. However, standard model-based RL methods, designed for the online setting, do not provide an explicit mechanism to avoid the offline setting's distributional shift issue. Instead, we propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics. We theoretically show that the algorithm maximizes a lower bound of the policy's return under the true MDP. We also characterize the trade-off between the gain and risk of leaving the support of the batch data. Our algorithm, Model-based Offline Policy Optimization (MOPO), outperforms standard model-based RL algorithms and prior state-of-the-art model-free offline RL algorithms on existing offline RL benchmarks and two challenging continuous control tasks that require generalizing from data collected for a different task. * equal contribution. † equal advising. Orders randomized.34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
在没有高保真模拟环境的情况下,学习有效的加强学习(RL)政策可以解决现实世界中的复杂任务。在大多数情况下,我们只有具有简化动力学的不完善的模拟器,这不可避免地导致RL策略学习中的SIM到巨大差距。最近出现的离线RL领域为直接从预先收集的历史数据中学习政策提供了另一种可能性。但是,为了达到合理的性能,现有的离线RL算法需要不切实际的离线数据,并具有足够的州行动空间覆盖范围进行培训。这提出了一个新问题:是否有可能通过在线RL中的不完美模拟器中的离线RL中的有限数据中的学习结合到无限制的探索,以解决两种方法的缺点?在这项研究中,我们提出了动态感知的混合离线和对线增强学习(H2O)框架,以为这个问题提供肯定的答案。 H2O引入了动态感知的政策评估方案,该方案可以自适应地惩罚Q函数在模拟的状态行动对上具有较大的动态差距,同时也允许从固定的现实世界数据集中学习。通过广泛的模拟和现实世界任务以及理论分析,我们证明了H2O与其他跨域在线和离线RL算法相对于其他跨域的表现。 H2O提供了全新的脱机脱机RL范式,该范式可能会阐明未来的RL算法设计,以解决实用的现实世界任务。
translated by 谷歌翻译
依赖于太多的实验来学习良好的行动,目前的强化学习(RL)算法在现实世界的环境中具有有限的适用性,这可能太昂贵,无法探索探索。我们提出了一种批量RL算法,其中仅使用固定的脱机数据集来学习有效策略,而不是与环境的在线交互。批量RL中的有限数据产生了在培训数据中不充分表示的状态/行动的价值估计中的固有不确定性。当我们的候选政策从生成数据的候选政策发散时,这导致特别严重的外推。我们建议通过两个直接的惩罚来减轻这个问题:减少这种分歧的政策限制和减少过于乐观估计的价值约束。在全面的32个连续动作批量RL基准测试中,我们的方法对最先进的方法进行了比较,无论如何收集离线数据如何。
translated by 谷歌翻译
离线增强学习(RL)可以从静态数据集中学习控制策略,但是像标准RL方法一样,它需要每个过渡的奖励注释。在许多情况下,将大型数据集标记为奖励可能会很高,尤其是如果人类标签必须提供这些奖励,同时收集多样的未标记数据可能相对便宜。我们如何在离线RL中最好地利用这种未标记的数据?一种自然解决方案是从标记的数据中学习奖励函数,并使用它标记未标记的数据。在本文中,我们发现,也许令人惊讶的是,一种简单得多的方法,它简单地将零奖励应用于未标记的数据可以导致理论和实践中的有效数据共享,而无需学习任何奖励模型。虽然这种方法起初可能看起来很奇怪(并且不正确),但我们提供了广泛的理论和经验分析,说明了它如何摆脱奖励偏见,样本复杂性和分配变化,通常会导致良好的结果。我们表征了这种简单策略有效的条件,并进一步表明,使用简单的重新加权方法扩展它可以进一步缓解通过使用不正确的奖励标签引入的偏见。我们的经验评估证实了模拟机器人运动,导航和操纵设置中的这些发现。
translated by 谷歌翻译
元加强学习(META-RL)是一种方法,即从解决各种任务中获得的经验被蒸馏成元政策。当仅适应一个小(或仅一个)数量的步骤时,元派利赛能够在新的相关任务上近距离执行。但是,采用这种方法来解决现实世界中的问题的主要挑战是,它们通常与稀疏的奖励功能相关联,这些功能仅表示任务是部分或完全完成的。我们考虑到某些数据可能由亚最佳代理生成的情况,可用于每个任务。然后,我们使用示范(EMRLD)开发了一类名为“增强元RL”的算法,即使在训练过程中获得了次优的指导,也可以利用此信息。我们展示了EMRLD如何共同利用RL和在离线数据上进行监督学习,以生成一个显示单调性能改进的元数据。我们还开发了一个称为EMRLD-WS的温暖开始的变体,该变体对于亚最佳演示数据特别有效。最后,我们表明,在包括移动机器人在内的各种稀疏奖励环境中,我们的EMRLD算法显着优于现有方法。
translated by 谷歌翻译
离线增强学习(RL)将经典RL算法的范式扩展到纯粹从静态数据集中学习,而无需在学习过程中与基础环境进行交互。离线RL的一个关键挑战是政策培训的不稳定,这是由于离线数据的分布与学习政策的未结束的固定状态分配之间的不匹配引起的。为了避免分配不匹配的有害影响,我们将当前政策的未静置固定分配正规化在政策优化过程中的离线数据。此外,我们训练动力学模型既实施此正规化,又可以更好地估计当前策略的固定分布,从而减少了分布不匹配引起的错误。在各种连续控制的离线RL数据集中,我们的方法表示竞争性能,从而验证了我们的算法。该代码公开可用。
translated by 谷歌翻译
现代的元强化学习(META-RL)方法主要基于模型 - 不合时宜的元学习开发,该方法在跨任务中执行策略梯度步骤以最大程度地提高策略绩效。但是,在元RL中,梯度冲突问题仍然很少了解,这可能导致遇到不同任务时的性能退化。为了应对这一挑战,本文提出了一种新颖的个性化元素RL(PMETA-RL)算法,该算法汇总了特定任务的个性化政策,以更新用于所有任务的元政策,同时保持个性化的政策,以最大程度地提高每个任务的平均回报在元政策的约束下任务。我们还提供了表格设置下的理论分析,该分析证明了我们的PMETA-RL算法的收敛性。此外,我们将所提出的PMETA-RL算法扩展到基于软参与者批评的深网络版本,使其适合连续控制任务。实验结果表明,所提出的算法在健身房和Mujoco套件上的其他以前的元rl算法都优于其他以前的元素算法。
translated by 谷歌翻译
Learning policies from fixed offline datasets is a key challenge to scale up reinforcement learning (RL) algorithms towards practical applications. This is often because off-policy RL algorithms suffer from distributional shift, due to mismatch between dataset and the target policy, leading to high variance and over-estimation of value functions. In this work, we propose variance regularization for offline RL algorithms, using stationary distribution corrections. We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer. The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms. We show that the regularizer leads to a lower bound to the offline policy optimization objective, which can help avoid over-estimation errors, and explains the benefits of our approach across a range of continuous control domains when compared to existing state-of-the-art algorithms.
translated by 谷歌翻译
我们研究离线元加强学习,这是一种实用的强化学习范式,从离线数据中学习以适应新任务。离线数据的分布由行为政策和任务共同确定。现有的离线元强化学习算法无法区分这些因素,从而使任务表示不稳定,不稳定行为策略。为了解决这个问题,我们为任务表示形式提出了一个对比度学习框架,这些框架对培训和测试中行为策略的分布不匹配是可靠的。我们设计了双层编码器结构,使用相互信息最大化来形式化任务表示学习,得出对比度学习目标,并引入了几种方法以近似负面对的真实分布。对各种离线元强化学习基准的实验证明了我们方法比先前方法的优势,尤其是在对分布外行为策略的概括方面。该代码可在https://github.com/pku-ai-ged/corro中找到。
translated by 谷歌翻译
Pessimism is of great importance in offline reinforcement learning (RL). One broad category of offline RL algorithms fulfills pessimism by explicit or implicit behavior regularization. However, most of them only consider policy divergence as behavior regularization, ignoring the effect of how the offline state distribution differs with that of the learning policy, which may lead to under-pessimism for some states and over-pessimism for others. Taking account of this problem, we propose a principled algorithmic framework for offline RL, called \emph{State-Aware Proximal Pessimism} (SA-PP). The key idea of SA-PP is leveraging discounted stationary state distribution ratios between the learning policy and the offline dataset to modulate the degree of behavior regularization in a state-wise manner, so that pessimism can be implemented in a more appropriate way. We first provide theoretical justifications on the superiority of SA-PP over previous algorithms, demonstrating that SA-PP produces a lower suboptimality upper bound in a broad range of settings. Furthermore, we propose a new algorithm named \emph{State-Aware Conservative Q-Learning} (SA-CQL), by building SA-PP upon representative CQL algorithm with the help of DualDICE for estimating discounted stationary state distribution ratios. Extensive experiments on standard offline RL benchmark show that SA-CQL outperforms the popular baselines on a large portion of benchmarks and attains the highest average return.
translated by 谷歌翻译
离线增强学习(RL)可以从先前收集的数据中进行有效的学习,而无需探索,这在探索昂贵甚至不可行时在现实世界应用中显示出巨大的希望。折扣因子$ \ gamma $在提高在线RL样本效率和估计准确性方面起着至关重要的作用,但是折现因子在离线RL中的作用尚未得到很好的探索。本文研究了$ \ gamma $在离线RL中的两个明显影响,并通过理论分析,即正则化效果和悲观效应。一方面,$ \ gamma $是在现有离线技术下以样本效率而定的最佳选择的监管机构。另一方面,较低的指导$ \ gamma $也可以看作是一种悲观的方式,我们在最坏的模型中优化了政策的性能。我们通过表格MDP和标准D4RL任务从经验上验证上述理论观察。结果表明,折现因子在离线RL算法的性能中起着至关重要的作用,无论是在现有的离线方法的小型数据制度下还是在没有其他保守主义的大型数据制度中。
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译
Offline reinforcement learning (RL) promises the ability to learn effective policies solely using existing, static datasets, without any costly online interaction. To do so, offline RL methods must handle distributional shift between the dataset and the learned policy. The most common approach is to learn conservative, or lower-bound, value functions, which underestimate the return of out-of-distribution (OOD) actions. However, such methods exhibit one notable drawback: policies optimized on such value functions can only behave according to a fixed, possibly suboptimal, degree of conservatism. However, this can be alleviated if we instead are able to learn policies for varying degrees of conservatism at training time and devise a method to dynamically choose one of them during evaluation. To do so, in this work, we propose learning value functions that additionally condition on the degree of conservatism, which we dub confidence-conditioned value functions. We derive a new form of a Bellman backup that simultaneously learns Q-values for any degree of confidence with high probability. By conditioning on confidence, our value functions enable adaptive strategies during online evaluation by controlling for confidence level using the history of observations thus far. This approach can be implemented in practice by conditioning the Q-function from existing conservative algorithms on the confidence. We theoretically show that our learned value functions produce conservative estimates of the true value at any desired confidence. Finally, we empirically show that our algorithm outperforms existing conservative offline RL algorithms on multiple discrete control domains.
translated by 谷歌翻译
在许多顺序决策问题(例如,机器人控制,游戏播放,顺序预测),人类或专家数据可用包含有关任务的有用信息。然而,来自少量专家数据的模仿学习(IL)可能在具有复杂动态的高维环境中具有挑战性。行为克隆是一种简单的方法,由于其简单的实现和稳定的收敛而被广泛使用,但不利用涉及环境动态的任何信息。由于对奖励和政策近似器或偏差,高方差梯度估计器,难以在实践中难以在实践中努力训练的许多现有方法。我们介绍了一种用于动态感知IL的方法,它通过学习单个Q函数来避免对抗训练,隐含地代表奖励和策略。在标准基准测试中,隐式学习的奖励显示与地面真实奖励的高正面相关性,说明我们的方法也可以用于逆钢筋学习(IRL)。我们的方法,逆软Q学习(IQ-Learn)获得了最先进的结果,在离线和在线模仿学习设置中,显着优于现有的现有方法,这些方法都在所需的环境交互和高维空间中的可扩展性中,通常超过3倍。
translated by 谷歌翻译
强大的增强学习(RL)的目的是学习一项与模型参数不确定性的强大策略。由于模拟器建模错误,随着时间的推移,现实世界系统动力学的变化以及对抗性干扰,参数不确定性通常发生在许多现实世界中的RL应用中。强大的RL通常被称为最大问题问题,其目的是学习最大化价值与不确定性集合中最坏可能的模型的策略。在这项工作中,我们提出了一种称为鲁棒拟合Q-材料(RFQI)的强大RL算法,该算法仅使用离线数据集来学习最佳稳健策略。使用离线数据的强大RL比其非持续性对应物更具挑战性,因为在强大的Bellman运营商中所有模型的最小化。这在离线数据收集,对模型的优化以及公正的估计中构成了挑战。在这项工作中,我们提出了一种系统的方法来克服这些挑战,从而导致了我们的RFQI算法。我们证明,RFQI在标准假设下学习了一项近乎最佳的强大政策,并证明了其在标准基准问题上的出色表现。
translated by 谷歌翻译
我们根据相对悲观主义的概念,在数据覆盖不足的情况下提出了经过对抗训练的演员评论家(ATAC),这是一种新的无模型算法(RL)。 ATAC被设计为两人Stackelberg游戏:政策演员与受对抗训练的价值评论家竞争,后者发现参与者不如数据收集行为策略的数据一致方案。我们证明,当演员在两人游戏中不后悔时,运行ATAC会产生一项政策,证明1)在控制悲观程度的各种超级参数上都超过了行为政策,而2)与最佳竞争。 policy covered by data with appropriately chosen hyperparameters.与现有作品相比,尤其是我们的框架提供了一般函数近似的理论保证,也提供了可扩展到复杂环境和大型数据集的深度RL实现。在D4RL基准测试中,ATAC在一系列连续的控制任务上始终优于最先进的离线RL算法。
translated by 谷歌翻译
基于模型的离线优化通过动态感知政策为策略学习和分布外概括提供了新的观点,在该策略中,学会的政策可以适应培训阶段列举的不同动态。但是,由于离线设置下的限制,学到的模型无法很好地模仿真实的动态,以支持可靠的分发勘探,这仍然阻碍了政策以良好的概括。为了缩小差距,先前的作品大致集成了随机初始化的模型,以更好地近似实际动力学。但是,这种做法是昂贵且效率低下的,并且无法保证学识渊博的模型可以近似真正的动态,我们在本文中命名了覆盖性。我们通过生成具有可证明的能力以有效且可控制的方式覆盖真实动态的模型来积极解决这个问题。为此,我们根据动力学下的策略占用,为动态模型设计一个距离度量,并提出了一种算法来生成模型,以优化其对真实动力学的覆盖范围。我们对模型生成过程进行了理论分析,并证明我们的算法可以提供增强的覆盖性。作为一项下游任务,我们以较小或没有保守的惩罚训练动态感知政策,实验表明我们的算法在现有的离线RL基准测试中优于先前的离线方法。我们还发现,通过我们的方法学到的政策具有更好的零转移性能,这意味着它们的概括更好。
translated by 谷歌翻译