依赖于太多的实验来学习良好的行动,目前的强化学习(RL)算法在现实世界的环境中具有有限的适用性,这可能太昂贵,无法探索探索。我们提出了一种批量RL算法,其中仅使用固定的脱机数据集来学习有效策略,而不是与环境的在线交互。批量RL中的有限数据产生了在培训数据中不充分表示的状态/行动的价值估计中的固有不确定性。当我们的候选政策从生成数据的候选政策发散时,这导致特别严重的外推。我们建议通过两个直接的惩罚来减轻这个问题:减少这种分歧的政策限制和减少过于乐观估计的价值约束。在全面的32个连续动作批量RL基准测试中,我们的方法对最先进的方法进行了比较,无论如何收集离线数据如何。
translated by 谷歌翻译
Effectively leveraging large, previously collected datasets in reinforcement learning (RL) is a key challenge for large-scale real-world applications. Offline RL algorithms promise to learn effective policies from previously-collected, static datasets without further interaction. However, in practice, offline RL presents a major challenge, and standard off-policy RL methods can fail due to overestimation of values induced by the distributional shift between the dataset and the learned policy, especially when training on complex and multi-modal data distributions. In this paper, we propose conservative Q-learning (CQL), which aims to address these limitations by learning a conservative Q-function such that the expected value of a policy under this Q-function lower-bounds its true value. We theoretically show that CQL produces a lower bound on the value of the current policy and that it can be incorporated into a policy learning procedure with theoretical improvement guarantees. In practice, CQL augments the standard Bellman error objective with a simple Q-value regularizer which is straightforward to implement on top of existing deep Q-learning and actor-critic implementations. On both discrete and continuous control domains, we show that CQL substantially outperforms existing offline RL methods, often learning policies that attain 2-5 times higher final return, especially when learning from complex and multi-modal data distributions.Preprint. Under review.
translated by 谷歌翻译
Off-policy reinforcement learning aims to leverage experience collected from prior policies for sample-efficient learning. However, in practice, commonly used off-policy approximate dynamic programming methods based on Q-learning and actor-critic methods are highly sensitive to the data distribution, and can make only limited progress without collecting additional on-policy data. As a step towards more robust off-policy algorithms, we study the setting where the off-policy experience is fixed and there is no further interaction with the environment. We identify bootstrapping error as a key source of instability in current methods. Bootstrapping error is due to bootstrapping from actions that lie outside of the training data distribution, and it accumulates via the Bellman backup operator. We theoretically analyze bootstrapping error, and demonstrate how carefully constraining action selection in the backup can mitigate it. Based on our analysis, we propose a practical algorithm, bootstrapping error accumulation reduction (BEAR). We demonstrate that BEAR is able to learn robustly from different off-policy distributions, including random and suboptimal demonstrations, on a range of continuous control tasks.
translated by 谷歌翻译
离线增强学习(RL)定义了从静态记录数据集学习的任务,而无需与环境不断交互。学识渊博的政策与行为政策之间的分配变化使得价值函数必须保持保守,以使分布(OOD)的动作不会被严重高估。但是,现有的方法,对看不见的行为进行惩罚或与行为政策进行正规化,太悲观了,这抑制了价值功能的概括并阻碍了性能的提高。本文探讨了温和但足够的保守主义,可以在线学习,同时不损害概括。我们提出了轻度保守的Q学习(MCQ),其中通过分配了适当的伪Q值来积极训练OOD。从理论上讲,我们表明MCQ诱导了至少与行为策略的行为,并且对OOD行动不会发生错误的高估。 D4RL基准测试的实验结果表明,与先前的工作相比,MCQ取得了出色的性能。此外,MCQ在从离线转移到在线时显示出卓越的概括能力,并明显胜过基准。
translated by 谷歌翻译
在许多顺序决策问题(例如,机器人控制,游戏播放,顺序预测),人类或专家数据可用包含有关任务的有用信息。然而,来自少量专家数据的模仿学习(IL)可能在具有复杂动态的高维环境中具有挑战性。行为克隆是一种简单的方法,由于其简单的实现和稳定的收敛而被广泛使用,但不利用涉及环境动态的任何信息。由于对奖励和政策近似器或偏差,高方差梯度估计器,难以在实践中难以在实践中努力训练的许多现有方法。我们介绍了一种用于动态感知IL的方法,它通过学习单个Q函数来避免对抗训练,隐含地代表奖励和策略。在标准基准测试中,隐式学习的奖励显示与地面真实奖励的高正面相关性,说明我们的方法也可以用于逆钢筋学习(IRL)。我们的方法,逆软Q学习(IQ-Learn)获得了最先进的结果,在离线和在线模仿学习设置中,显着优于现有的现有方法,这些方法都在所需的环境交互和高维空间中的可扩展性中,通常超过3倍。
translated by 谷歌翻译
我们根据相对悲观主义的概念,在数据覆盖不足的情况下提出了经过对抗训练的演员评论家(ATAC),这是一种新的无模型算法(RL)。 ATAC被设计为两人Stackelberg游戏:政策演员与受对抗训练的价值评论家竞争,后者发现参与者不如数据收集行为策略的数据一致方案。我们证明,当演员在两人游戏中不后悔时,运行ATAC会产生一项政策,证明1)在控制悲观程度的各种超级参数上都超过了行为政策,而2)与最佳竞争。 policy covered by data with appropriately chosen hyperparameters.与现有作品相比,尤其是我们的框架提供了一般函数近似的理论保证,也提供了可扩展到复杂环境和大型数据集的深度RL实现。在D4RL基准测试中,ATAC在一系列连续的控制任务上始终优于最先进的离线RL算法。
translated by 谷歌翻译
强化学习(RL)已在域中展示有效,在域名可以通过与其操作环境进行积极互动来学习政策。但是,如果我们将RL方案更改为脱机设置,代理商只能通过静态数据集更新其策略,其中脱机强化学习中的一个主要问题出现,即分配转移。我们提出了一种悲观的离线强化学习(PESSORL)算法,以主动引导代理通过操纵价值函数来恢复熟悉的区域。我们专注于由分销外(OOD)状态引起的问题,并且故意惩罚训练数据集中不存在的状态的高值,以便学习的悲观值函数下限界限状态空间内的任何位置。我们在各种基准任务中评估Pessorl算法,在那里我们表明我们的方法通过明确处理OOD状态,与这些方法仅考虑ood行动时,我们的方法通过明确处理OOD状态。
translated by 谷歌翻译
Many practical applications of reinforcement learning constrain agents to learn from a fixed batch of data which has already been gathered, without offering further possibility for data collection. In this paper, we demonstrate that due to errors introduced by extrapolation, standard offpolicy deep reinforcement learning algorithms, such as DQN and DDPG, are incapable of learning without data correlated to the distribution under the current policy, making them ineffective for this fixed batch setting. We introduce a novel class of off-policy algorithms, batch-constrained reinforcement learning, which restricts the action space in order to force the agent towards behaving close to on-policy with respect to a subset of the given data. We present the first continuous control deep reinforcement learning algorithm which can learn effectively from arbitrary, fixed batch data, and empirically demonstrate the quality of its behavior in several tasks.
translated by 谷歌翻译
Offline reinforcement learning (RL) promises the ability to learn effective policies solely using existing, static datasets, without any costly online interaction. To do so, offline RL methods must handle distributional shift between the dataset and the learned policy. The most common approach is to learn conservative, or lower-bound, value functions, which underestimate the return of out-of-distribution (OOD) actions. However, such methods exhibit one notable drawback: policies optimized on such value functions can only behave according to a fixed, possibly suboptimal, degree of conservatism. However, this can be alleviated if we instead are able to learn policies for varying degrees of conservatism at training time and devise a method to dynamically choose one of them during evaluation. To do so, in this work, we propose learning value functions that additionally condition on the degree of conservatism, which we dub confidence-conditioned value functions. We derive a new form of a Bellman backup that simultaneously learns Q-values for any degree of confidence with high probability. By conditioning on confidence, our value functions enable adaptive strategies during online evaluation by controlling for confidence level using the history of observations thus far. This approach can be implemented in practice by conditioning the Q-function from existing conservative algorithms on the confidence. We theoretically show that our learned value functions produce conservative estimates of the true value at any desired confidence. Finally, we empirically show that our algorithm outperforms existing conservative offline RL algorithms on multiple discrete control domains.
translated by 谷歌翻译
Offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data. This problem setting offers the promise of utilizing such datasets to acquire policies without any costly or dangerous active exploration. However, it is also challenging, due to the distributional shift between the offline training data and those states visited by the learned policy. Despite significant recent progress, the most successful prior methods are model-free and constrain the policy to the support of data, precluding generalization to unseen states. In this paper, we first observe that an existing model-based RL algorithm already produces significant gains in the offline setting compared to model-free approaches. However, standard model-based RL methods, designed for the online setting, do not provide an explicit mechanism to avoid the offline setting's distributional shift issue. Instead, we propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics. We theoretically show that the algorithm maximizes a lower bound of the policy's return under the true MDP. We also characterize the trade-off between the gain and risk of leaving the support of the batch data. Our algorithm, Model-based Offline Policy Optimization (MOPO), outperforms standard model-based RL algorithms and prior state-of-the-art model-free offline RL algorithms on existing offline RL benchmarks and two challenging continuous control tasks that require generalizing from data collected for a different task. * equal contribution. † equal advising. Orders randomized.34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
大多数前往离线强化学习(RL)的方法都采取了一种迭代演员 - 批评批评,涉及违规评估。在本文中,我们展示了使用行为政策的政策Q估计来令人惊讶地执行一步的Q估计,从而简单地执行一个受限制/正规化的政策改进的步骤。该一步算法在大部分D4RL基准测试中击败了先前报告的迭代算法的结果。一步基线实现了这种强劲的性能,同时对超公数更简单,更强大而不是先前提出的迭代算法。我们认为迭代方法的表现相对较差是在违反政策评估中固有的高方差,并通过对这些估计的重复优化的政策进行放大。此外,我们假设一步算法的强大性能是由于环境和行为政策中有利结构的组合。
translated by 谷歌翻译
在没有高保真模拟环境的情况下,学习有效的加强学习(RL)政策可以解决现实世界中的复杂任务。在大多数情况下,我们只有具有简化动力学的不完善的模拟器,这不可避免地导致RL策略学习中的SIM到巨大差距。最近出现的离线RL领域为直接从预先收集的历史数据中学习政策提供了另一种可能性。但是,为了达到合理的性能,现有的离线RL算法需要不切实际的离线数据,并具有足够的州行动空间覆盖范围进行培训。这提出了一个新问题:是否有可能通过在线RL中的不完美模拟器中的离线RL中的有限数据中的学习结合到无限制的探索,以解决两种方法的缺点?在这项研究中,我们提出了动态感知的混合离线和对线增强学习(H2O)框架,以为这个问题提供肯定的答案。 H2O引入了动态感知的政策评估方案,该方案可以自适应地惩罚Q函数在模拟的状态行动对上具有较大的动态差距,同时也允许从固定的现实世界数据集中学习。通过广泛的模拟和现实世界任务以及理论分析,我们证明了H2O与其他跨域在线和离线RL算法相对于其他跨域的表现。 H2O提供了全新的脱机脱机RL范式,该范式可能会阐明未来的RL算法设计,以解决实用的现实世界任务。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
与政策策略梯度技术相比,使用先前收集的数据的无模型的无模型深钢筋学习(RL)方法可以提高采样效率。但是,当利益政策的分布与收集数据的政策之间的差异时,非政策学习变得具有挑战性。尽管提出了良好的重要性抽样和范围的政策梯度技术来补偿这种差异,但它们通常需要一系列长轨迹,以增加计算复杂性并引起其他问题,例如消失或爆炸梯度。此外,由于需要行动概率,它们对连续动作领域的概括严格受到限制,这不适合确定性政策。为了克服这些局限性,我们引入了一种替代的非上政策校正算法,用于连续作用空间,参与者 - 批判性非政策校正(AC-OFF-POC),以减轻先前收集的数据引入的潜在缺陷。通过由代理商对随机采样批次过渡的状态的最新动作决策计算出的新颖差异度量,该方法不需要任何策略的实际或估计的行动概率,并提供足够的一步重要性抽样。理论结果表明,引入的方法可以使用固定的独特点获得收缩映射,从而可以进行“安全”的非政策学习。我们的经验结果表明,AC-Off-POC始终通过有效地安排学习率和Q学习和政策优化的学习率,以比竞争方法更少的步骤改善最新的回报。
translated by 谷歌翻译
Learning policies from fixed offline datasets is a key challenge to scale up reinforcement learning (RL) algorithms towards practical applications. This is often because off-policy RL algorithms suffer from distributional shift, due to mismatch between dataset and the target policy, leading to high variance and over-estimation of value functions. In this work, we propose variance regularization for offline RL algorithms, using stationary distribution corrections. We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer. The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms. We show that the regularizer leads to a lower bound to the offline policy optimization objective, which can help avoid over-estimation errors, and explains the benefits of our approach across a range of continuous control domains when compared to existing state-of-the-art algorithms.
translated by 谷歌翻译
在训练数据的分布中评估时,学到的模型和政策可以有效地概括,但可以在分布输入输入的情况下产生不可预测且错误的输出。为了避免在部署基于学习的控制算法时分配变化,我们寻求一种机制将代理商限制为类似于受过训练的国家和行动的机制。在控制理论中,Lyapunov稳定性和控制不变的集合使我们能够保证稳定系统周围系统的控制器,而在机器学习中,密度模型使我们能够估算培训数据分布。我们可以将这两个概念结合起来,产生基于学习的控制算法,这些算法仅使用分配动作将系统限制为分布状态?在这项工作中,我们建议通过结合Lyapunov稳定性和密度估计的概念来做到这一点,引入Lyapunov密度模型:控制Lyapunov函数和密度模型的概括,这些函数和密度模型可以保证代理商在其整个轨迹上保持分布的能力。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
政策梯度(PG)算法是备受期待的强化学习对现实世界控制任务(例如机器人技术)的最佳候选人之一。但是,每当必须在物理系统上执行学习过程本身或涉及任何形式的人类计算机相互作用时,这些方法的反复试验性质就会提出安全问题。在本文中,我们解决了一种特定的安全公式,其中目标和危险都以标量奖励信号进行编码,并且学习代理被限制为从不恶化其性能,以衡量为预期的奖励总和。通过从随机优化的角度研究仅行为者的政策梯度,我们为广泛的参数政策建立了改进保证,从而将现有结果推广到高斯政策上。这与策略梯度估计器的差异的新型上限一起,使我们能够识别出具有很高概率的单调改进的元参数计划。两个关键的元参数是参数更新的步长和梯度估计的批处理大小。通过对这些元参数的联合自适应选择,我们获得了具有单调改进保证的政策梯度算法。
translated by 谷歌翻译
离线增强学习(RL)将经典RL算法的范式扩展到纯粹从静态数据集中学习,而无需在学习过程中与基础环境进行交互。离线RL的一个关键挑战是政策培训的不稳定,这是由于离线数据的分布与学习政策的未结束的固定状态分配之间的不匹配引起的。为了避免分配不匹配的有害影响,我们将当前政策的未静置固定分配正规化在政策优化过程中的离线数据。此外,我们训练动力学模型既实施此正规化,又可以更好地估计当前策略的固定分布,从而减少了分布不匹配引起的错误。在各种连续控制的离线RL数据集中,我们的方法表示竞争性能,从而验证了我们的算法。该代码公开可用。
translated by 谷歌翻译
While reinforcement learning algorithms provide automated acquisition of optimal policies, practical application of such methods requires a number of design decisions, such as manually designing reward functions that not only define the task, but also provide sufficient shaping to accomplish it. In this paper, we view reinforcement learning as inferring policies that achieve desired outcomes, rather than as a problem of maximizing rewards. To solve this inference problem, we establish a novel variational inference formulation that allows us to derive a well-shaped reward function which can be learned directly from environment interactions. From the corresponding variational objective, we also derive a new probabilistic Bellman backup operator and use it to develop an off-policy algorithm to solve goal-directed tasks. We empirically demonstrate that this method eliminates the need to hand-craft reward functions for a suite of diverse manipulation and locomotion tasks and leads to effective goal-directed behaviors.
translated by 谷歌翻译