基于模型的离线优化通过动态感知政策为策略学习和分布外概括提供了新的观点,在该策略中,学会的政策可以适应培训阶段列举的不同动态。但是,由于离线设置下的限制,学到的模型无法很好地模仿真实的动态,以支持可靠的分发勘探,这仍然阻碍了政策以良好的概括。为了缩小差距,先前的作品大致集成了随机初始化的模型,以更好地近似实际动力学。但是,这种做法是昂贵且效率低下的,并且无法保证学识渊博的模型可以近似真正的动态,我们在本文中命名了覆盖性。我们通过生成具有可证明的能力以有效且可控制的方式覆盖真实动态的模型来积极解决这个问题。为此,我们根据动力学下的策略占用,为动态模型设计一个距离度量,并提出了一种算法来生成模型,以优化其对真实动力学的覆盖范围。我们对模型生成过程进行了理论分析,并证明我们的算法可以提供增强的覆盖性。作为一项下游任务,我们以较小或没有保守的惩罚训练动态感知政策,实验表明我们的算法在现有的离线RL基准测试中优于先前的离线方法。我们还发现,通过我们的方法学到的政策具有更好的零转移性能,这意味着它们的概括更好。
translated by 谷歌翻译
Offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data. This problem setting offers the promise of utilizing such datasets to acquire policies without any costly or dangerous active exploration. However, it is also challenging, due to the distributional shift between the offline training data and those states visited by the learned policy. Despite significant recent progress, the most successful prior methods are model-free and constrain the policy to the support of data, precluding generalization to unseen states. In this paper, we first observe that an existing model-based RL algorithm already produces significant gains in the offline setting compared to model-free approaches. However, standard model-based RL methods, designed for the online setting, do not provide an explicit mechanism to avoid the offline setting's distributional shift issue. Instead, we propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics. We theoretically show that the algorithm maximizes a lower bound of the policy's return under the true MDP. We also characterize the trade-off between the gain and risk of leaving the support of the batch data. Our algorithm, Model-based Offline Policy Optimization (MOPO), outperforms standard model-based RL algorithms and prior state-of-the-art model-free offline RL algorithms on existing offline RL benchmarks and two challenging continuous control tasks that require generalizing from data collected for a different task. * equal contribution. † equal advising. Orders randomized.34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译
现有的离线增强学习(RL)方法面临一些主要挑战,尤其是学识渊博的政策与行为政策之间的分配转变。离线Meta-RL正在成为应对这些挑战的一种有前途的方法,旨在从一系列任务中学习信息丰富的元基础。然而,如我们的实证研究所示,离线元RL在具有良好数据集质量的任务上的单个任务RL方法可能胜过,这表明必须在“探索”不合时宜的情况下进行精细的平衡。通过遵循元元素和“利用”离线数据集的分配状态行为,保持靠近行为策略。通过这种经验分析的激励,我们探索了基于模型的离线元RL,并具有正则政策优化(MERPO),该策略优化(MERPO)学习了一种用于有效任务结构推理的元模型,并提供了提供信息的元元素,以安全地探索过分分布状态 - 行为。特别是,我们使用保守的政策评估和正规政策改进,设计了一种新的基于元指数的基于元指数的基于元模型的参与者批判性(RAC),作为MERPO的关键构建块作为Merpo的关键构建块;而其中的内在权衡是通过在两个正规机构之间达到正确的平衡来实现的,一个是基于行为政策,另一个基于元政策。从理论上讲,我们学识渊博的政策可以保证对行为政策和元政策都有保证的改进,从而确保通过离线元RL对新任务的绩效提高。实验证实了Merpo优于现有的离线META-RL方法的出色性能。
translated by 谷歌翻译
Effectively leveraging large, previously collected datasets in reinforcement learning (RL) is a key challenge for large-scale real-world applications. Offline RL algorithms promise to learn effective policies from previously-collected, static datasets without further interaction. However, in practice, offline RL presents a major challenge, and standard off-policy RL methods can fail due to overestimation of values induced by the distributional shift between the dataset and the learned policy, especially when training on complex and multi-modal data distributions. In this paper, we propose conservative Q-learning (CQL), which aims to address these limitations by learning a conservative Q-function such that the expected value of a policy under this Q-function lower-bounds its true value. We theoretically show that CQL produces a lower bound on the value of the current policy and that it can be incorporated into a policy learning procedure with theoretical improvement guarantees. In practice, CQL augments the standard Bellman error objective with a simple Q-value regularizer which is straightforward to implement on top of existing deep Q-learning and actor-critic implementations. On both discrete and continuous control domains, we show that CQL substantially outperforms existing offline RL methods, often learning policies that attain 2-5 times higher final return, especially when learning from complex and multi-modal data distributions.Preprint. Under review.
translated by 谷歌翻译
离线强化学习(RL)任务要求代理从预先收集的数据集中学习,没有与环境进行进一步的交互。尽管有可能超越行为政策,但基于RL的方法通常是不切实际的,因为培训不稳定并引导外推错误,这始终需要通过在线评估进行仔细的超参数调整。相比之下,离线模仿学习(IL)没有这样的问题,因为它直接在不估计值函数的情况下直接了解策略。然而,IL通常限制在行为政策的能力,并且倾向于从政策混合收集的数据集中学习平庸行为。在本文中,我们的目标是利用IL但缓解这种缺点。观察行为克隆能够使用较少的数据模仿邻近的策略,我们提出\ Textit {课程脱机仿制学习(线圈)},它利用具有更高回报的自适应邻近策略的体验挑选策略,并提高了当前策略沿课程阶段。在连续控制基准测试中,我们将线圈与基于仿制的和基于RL的方法进行比较,表明它不仅避免了在混合数据集上学习平庸行为,而且甚至与最先进的离线RL方法竞争。
translated by 谷歌翻译
Designing and analyzing model-based RL (MBRL) algorithms with guaranteed monotonic improvement has been challenging, mainly due to the interdependence between policy optimization and model learning. Existing discrepancy bounds generally ignore the impacts of model shifts, and their corresponding algorithms are prone to degrade performance by drastic model updating. In this work, we first propose a novel and general theoretical scheme for a non-decreasing performance guarantee of MBRL. Our follow-up derived bounds reveal the relationship between model shifts and performance improvement. These discoveries encourage us to formulate a constrained lower-bound optimization problem to permit the monotonicity of MBRL. A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns. Motivated by these analyses, we design a simple but effective algorithm CMLO (Constrained Model-shift Lower-bound Optimization), by introducing an event-triggered mechanism that flexibly determines when to update the model. Experiments show that CMLO surpasses other state-of-the-art methods and produces a boost when various policy optimization methods are employed.
translated by 谷歌翻译
离线增强学习(RL)定义了从静态记录数据集学习的任务,而无需与环境不断交互。学识渊博的政策与行为政策之间的分配变化使得价值函数必须保持保守,以使分布(OOD)的动作不会被严重高估。但是,现有的方法,对看不见的行为进行惩罚或与行为政策进行正规化,太悲观了,这抑制了价值功能的概括并阻碍了性能的提高。本文探讨了温和但足够的保守主义,可以在线学习,同时不损害概括。我们提出了轻度保守的Q学习(MCQ),其中通过分配了适当的伪Q值来积极训练OOD。从理论上讲,我们表明MCQ诱导了至少与行为策略的行为,并且对OOD行动不会发生错误的高估。 D4RL基准测试的实验结果表明,与先前的工作相比,MCQ取得了出色的性能。此外,MCQ在从离线转移到在线时显示出卓越的概括能力,并明显胜过基准。
translated by 谷歌翻译
离线增强学习(RL)可以从先前收集的数据中进行有效的学习,而无需探索,这在探索昂贵甚至不可行时在现实世界应用中显示出巨大的希望。折扣因子$ \ gamma $在提高在线RL样本效率和估计准确性方面起着至关重要的作用,但是折现因子在离线RL中的作用尚未得到很好的探索。本文研究了$ \ gamma $在离线RL中的两个明显影响,并通过理论分析,即正则化效果和悲观效应。一方面,$ \ gamma $是在现有离线技术下以样本效率而定的最佳选择的监管机构。另一方面,较低的指导$ \ gamma $也可以看作是一种悲观的方式,我们在最坏的模型中优化了政策的性能。我们通过表格MDP和标准D4RL任务从经验上验证上述理论观察。结果表明,折现因子在离线RL算法的性能中起着至关重要的作用,无论是在现有的离线方法的小型数据制度下还是在没有其他保守主义的大型数据制度中。
translated by 谷歌翻译
设计有效的基于模型的增强学习算法很困难,因为必须对模型生成数据的偏置权衡数据生成的易用性。在本文中,我们研究了模型使用在理论上和经验上的政策优化中的作用。我们首先制定和分析一种基于模型的加强学习算法,并在每个步骤中保证单调改善。在实践中,该分析过于悲观,并表明实际的脱助策略数据总是优选模拟策略数据,但我们表明可以将模型概括的经验估计纳入这样的分析以证明模型使用证明模型使用。通过这种分析的动机,我们证明,使用从真实数据分支的短模型生成的卷展栏的简单过程具有更复杂的基于模型的算法而没有通常的缺陷的效益。特别是,这种方法超越了基于模型的方法的样本效率,匹配了最佳无模型算法的渐近性能,并缩放到导致其他基于模型的方法完全失败的视野。
translated by 谷歌翻译
解决稀疏奖励的多目标强化学习(RL)问题通常是具有挑战性的。现有方法利用目标依赖收集的经验,以减轻稀疏奖励提出的问题。然而,这些方法仍然有效,无法充分利用经验。在本文中,我们提出了基于模型的后敏感体验重放(MIRH),通过利用环境动态来产生虚拟实现的目标,更有效地利用更有效的体验。用从训练有素的动态模型的交互中产生的虚拟目标替换原始目标导致一种新的重定相制方法,基于模型的重新标记(MBR)。基于MBR,MEHER执行加强学习和监督学习以获得高效的政策改进。从理论上讲,我们还证明了MBR数据的目标调节监督学习的监督部分,优化了多目标RL目标的下限。基于几个点的任务和模拟机器人环境的实验结果表明,MINHER比以前的无模型和基于模型的多目标方法实现显着更高的样本效率。
translated by 谷歌翻译
在没有高保真模拟环境的情况下,学习有效的加强学习(RL)政策可以解决现实世界中的复杂任务。在大多数情况下,我们只有具有简化动力学的不完善的模拟器,这不可避免地导致RL策略学习中的SIM到巨大差距。最近出现的离线RL领域为直接从预先收集的历史数据中学习政策提供了另一种可能性。但是,为了达到合理的性能,现有的离线RL算法需要不切实际的离线数据,并具有足够的州行动空间覆盖范围进行培训。这提出了一个新问题:是否有可能通过在线RL中的不完美模拟器中的离线RL中的有限数据中的学习结合到无限制的探索,以解决两种方法的缺点?在这项研究中,我们提出了动态感知的混合离线和对线增强学习(H2O)框架,以为这个问题提供肯定的答案。 H2O引入了动态感知的政策评估方案,该方案可以自适应地惩罚Q函数在模拟的状态行动对上具有较大的动态差距,同时也允许从固定的现实世界数据集中学习。通过广泛的模拟和现实世界任务以及理论分析,我们证明了H2O与其他跨域在线和离线RL算法相对于其他跨域的表现。 H2O提供了全新的脱机脱机RL范式,该范式可能会阐明未来的RL算法设计,以解决实用的现实世界任务。
translated by 谷歌翻译
基于模型的强化学习引起了广泛的样本效率。尽管到目前为止,它令人印象深刻,但仍然不清楚如何适当安排重要的超参数,以实现足够的性能,例如基于Dyna样式的算法中的政策优化的实际数据比。在本文中,我们首先分析了实际数据在政策培训中的作用,这表明逐渐增加了实际数据的比例会产生更好的性能。灵感来自分析,我们提出了一个名为autombpo的框架,以自动安排真实的数据比以及基于培训模型的策略优化(MBPO)算法的其他超参数,是基于模型的方法的代表性运行情况。在几个连续控制任务上,由AutomBPO安排的HyperParameters培训的MBPO实例可以显着超越原始的,并且AutomBPO找到的真实数据比例计划显示了与我们的理论分析的一致性。
translated by 谷歌翻译
在许多顺序决策问题(例如,机器人控制,游戏播放,顺序预测),人类或专家数据可用包含有关任务的有用信息。然而,来自少量专家数据的模仿学习(IL)可能在具有复杂动态的高维环境中具有挑战性。行为克隆是一种简单的方法,由于其简单的实现和稳定的收敛而被广泛使用,但不利用涉及环境动态的任何信息。由于对奖励和政策近似器或偏差,高方差梯度估计器,难以在实践中难以在实践中努力训练的许多现有方法。我们介绍了一种用于动态感知IL的方法,它通过学习单个Q函数来避免对抗训练,隐含地代表奖励和策略。在标准基准测试中,隐式学习的奖励显示与地面真实奖励的高正面相关性,说明我们的方法也可以用于逆钢筋学习(IRL)。我们的方法,逆软Q学习(IQ-Learn)获得了最先进的结果,在离线和在线模仿学习设置中,显着优于现有的现有方法,这些方法都在所需的环境交互和高维空间中的可扩展性中,通常超过3倍。
translated by 谷歌翻译
强化学习(RL)已在域中展示有效,在域名可以通过与其操作环境进行积极互动来学习政策。但是,如果我们将RL方案更改为脱机设置,代理商只能通过静态数据集更新其策略,其中脱机强化学习中的一个主要问题出现,即分配转移。我们提出了一种悲观的离线强化学习(PESSORL)算法,以主动引导代理通过操纵价值函数来恢复熟悉的区域。我们专注于由分销外(OOD)状态引起的问题,并且故意惩罚训练数据集中不存在的状态的高值,以便学习的悲观值函数下限界限状态空间内的任何位置。我们在各种基准任务中评估Pessorl算法,在那里我们表明我们的方法通过明确处理OOD状态,与这些方法仅考虑ood行动时,我们的方法通过明确处理OOD状态。
translated by 谷歌翻译
Off-policy reinforcement learning aims to leverage experience collected from prior policies for sample-efficient learning. However, in practice, commonly used off-policy approximate dynamic programming methods based on Q-learning and actor-critic methods are highly sensitive to the data distribution, and can make only limited progress without collecting additional on-policy data. As a step towards more robust off-policy algorithms, we study the setting where the off-policy experience is fixed and there is no further interaction with the environment. We identify bootstrapping error as a key source of instability in current methods. Bootstrapping error is due to bootstrapping from actions that lie outside of the training data distribution, and it accumulates via the Bellman backup operator. We theoretically analyze bootstrapping error, and demonstrate how carefully constraining action selection in the backup can mitigate it. Based on our analysis, we propose a practical algorithm, bootstrapping error accumulation reduction (BEAR). We demonstrate that BEAR is able to learn robustly from different off-policy distributions, including random and suboptimal demonstrations, on a range of continuous control tasks.
translated by 谷歌翻译
通常通过利用低级别表示来解决马尔可夫决策过程(MDP)中维度的诅咒。这激发了有关线性MDP的最新理论研究。但是,大多数方法在不切实际的假设下对分解的归一化或在实践中引入未解决的计算挑战。相反,我们考虑了线性MDP的替代定义,该定义自动确保正常化,同时允许通过对比度估计进行有效的表示。该框架还承认了置信度调整的索引算法,从而使面对不确定性的乐观或悲观主义,使得有效而有原则的方法。据我们所知,这为线性MDP提供了第一种实用的表示学习方法,该方法既可以实现强大的理论保证和经验绩效。从理论上讲,我们证明所提出的算法在在线和离线设置中均有效。从经验上讲,我们在几个基准测试中表现出优于现有基于模型的现有模型和无模型算法的卓越性能。
translated by 谷歌翻译
脱机强化学习 - 从一批数据中学习策略 - 是难以努力的:如果没有制造强烈的假设,它很容易构建实体算法失败的校长。在这项工作中,我们考虑了某些现实世界问题的财产,其中离线强化学习应该有效:行动仅对一部分产生有限的行动。我们正规化并介绍此动作影响规律(AIR)财产。我们进一步提出了一种算法,该算法假定和利用AIR属性,并在MDP满足空气时绑定输出策略的子优相。最后,我们展示了我们的算法在定期保留的两个模拟环境中跨越不同的数据收集策略占据了现有的离线强度学习算法。
translated by 谷歌翻译
提高强化学习样本效率的一种有希望的方法是基于模型的方法,其中在学习模型中可以进行许多探索和评估以节省现实世界样本。但是,当学习模型具有不可忽略的模型误差时,很难准确评估模型中的顺序步骤,从而限制了模型的利用率。本文建议通过引入多步计划来替换基于模型的RL的多步骤操作来减轻此问题。我们采用多步计划价值估计,该估计在执行给定状态的一系列操作计划后评估预期的折扣收益,并通过直接通过计划价值估计来直接计算多步策略梯度来更新策略。新的基于模型的强化学习算法MPPVE(基于模型的计划策略学习具有多步计划价值估计)显示了对学习模型的利用率更好,并且比基于ART模型的RL更好地实现了样本效率方法。
translated by 谷歌翻译
我们研究离线元加强学习,这是一种实用的强化学习范式,从离线数据中学习以适应新任务。离线数据的分布由行为政策和任务共同确定。现有的离线元强化学习算法无法区分这些因素,从而使任务表示不稳定,不稳定行为策略。为了解决这个问题,我们为任务表示形式提出了一个对比度学习框架,这些框架对培训和测试中行为策略的分布不匹配是可靠的。我们设计了双层编码器结构,使用相互信息最大化来形式化任务表示学习,得出对比度学习目标,并引入了几种方法以近似负面对的真实分布。对各种离线元强化学习基准的实验证明了我们方法比先前方法的优势,尤其是在对分布外行为策略的概括方面。该代码可在https://github.com/pku-ai-ged/corro中找到。
translated by 谷歌翻译