血流特征的预测对于了解血液动脉网络的行为至关重要,特别是在血管疾病(如狭窄)的存在下。计算流体动力学(CFD)提供了一种强大而有效的工具,可以确定包括网络内的压力和速度字段的这些特征。尽管该领域有许多研究,但CFD的极高计算成本导致研究人员开发新的平台,包括机器学习方法,而是以更低的成本提供更快的分析。在这项研究中,我们提出了一个深度神经网络框架,以预测冠状动脉网络中的流动行为,在存在像狭窄等异常存在下具有不同的性质。为此,使用合成数据训练人工神经网络(ANN)模型,使得它可以预测动脉网络内的压力和速度。培训神经网络所需的数据是从ABAQUS软件的特定特征的次数的CFD分析中获得了培训神经网络的数据。狭窄引起的血压下降,这是诊断心脏病诊断中最重要的因素之一,可以使用我们所提出的模型来了解冠状动脉的任何部分的几何和流动边界条件。使用Lad血管的三个实际几何形状来验证模型的效率。所提出的方法精确地预测了血流量的血流动力学行为。压力预测的平均精度为98.7%,平均速度幅度精度为93.2%。根据测试三个患者特定几何形状的模型的结果,模型可以被认为是有限元方法的替代方案以及其他难以实现的耗时数值模拟。
translated by 谷歌翻译
主动脉(COA)患者特异性计算流体动力学(CFD)研究的目的 - 在资源约束设置中的研究受到可用成像方式和速度数据采集的可用成像方式的限制。多普勒超声心动图被视为合适的速度获取方式,因为其可用性和安全性较高。这项研究旨在调查经典机器学习(ML)方法的应用,以创建一种适当且可靠的方法,用于从多普勒超声心动图图像中获得边界条件(BCS),用于使用CFD进行血液动力学建模。方法 - 我们提出的方法结合了ML和CFD,以模拟感兴趣区域内的血流动力学流动。该方法的关键特征是使用ML模型来校准CFD模型的入口和出口边界条件(BCS)。 ML模型的关键输入变量是患者心率,因为这是研究中测得的血管的时间变化的参数。在研究的CFD组件中使用ANSYS Fluent,而Scikit-Learn Python库则用于ML分量。结果 - 我们在干预前对严重COA的真实临床案例进行了验证。将我们的模拟的最大缩回速度与从研究中使用的几何形状获得的患者获得的测量最大骨质速度进行了比较。在用于获得BCS的5 mL模型中,顶部模型在测得的最大骨质速度的5 \%之内。结论 - 该框架表明,它能够考虑在测量之间考虑患者心率的变化。因此,当在每个血管上缩放心率时,可以在生理上逼真的BC计算,同时提供合理准确的溶液。
translated by 谷歌翻译
建立针对双狭窄的动脉模型的计算流体动力学(CFD)的患者特异性有限元分析(FEA)模型涉及时间和努力,限制医生在时间关键时间医疗应用中快速响应的能力。这些问题可能通过培训深度学习(DL)模型来解决,以使用由具有不同配置的简化双韵动脉模型的CFD模拟产生的数据集来学习和预测血流特性。当通过从IVUS成像的实际双狭窄的动脉模型进行血液流动模式时,揭示了狭窄的颈部几何形状的正弦逼近,这些颈部几何形状被广泛用于先前的研究作品,未能有效地代表真实的效果收缩。结果,提出了一种收缩颈的新型几何表示,其就广义简化模型而言,这始终是前者的假设。动脉腔直径和流量参数的顺序变化沿着船长的长度呈现使用LSTM和GRU DL模型的机会。然而,对于短长度的倍增血液动脉的小数据集,基本神经网络模型优于大多数流动性质的专用RNN。另一方面,LSTM对预测具有大波动的流动性能更好,例如在血管的长度上变化血压。尽管在数据集中的船舶的所有属性训练和测试方面具有良好的整体准确性,但GRU模型在所有情况下为单个血管流预测的表现不佳。结果还指向任何模型中每个属性的单独优化的超级参数,而不是旨在通过单一的HyperParameters来实现所有输出的整体良好性能。
translated by 谷歌翻译
计算流体动力学(CFD)可用于模拟血管血流动力学并分析潜在的治疗方案。 CFD已显示对改善患者预后有益。但是,尚未实现CFD的实施CFD。 CFD的障碍包括高计算资源,设计模拟设置所需的专业经验以及较长的处理时间。这项研究的目的是探索使用机器学习(ML)以自动和快速回归模型复制常规主动脉CFD。用于训练/测试的数据该模型由在合成生成的3D主动脉形状上执行的3,000个CFD模拟组成。这些受试者是由基于实际患者特异性主动脉(n = 67)的统计形状模型(SSM)生成的。对200个测试形状进行的推理导致压力和速度的平均误差分别为6.01%+/- 3.12 SD和3.99%+/- 0.93 SD。我们的基于ML的模型在〜0.075秒内执行CFD(比求解器快4,000倍)。这项研究表明,可以使用ML以更快的速度,自动过程和高精度来复制常规血管CFD的结果。
translated by 谷歌翻译
在热分析和低温热交换器的几何设计过程中,强迫沸腾现象的准确降低估计很重要。但是,当前预测压降的方法存在两个问题之一:缺乏对不同情况的准确性或概括。在这项工作中,我们介绍了相关的信息神经网络(COINN),这是应用人工神经网络(ANN)技术的新范式,结合了成功的压降相关性,作为预测微质混合压力下降的绘制工具 - 通道。所提出的方法是受转移学习的启发,该方法在减少数据集的深度学习问题中高度使用。我们的方法通过将Sun&Mishima相关性的知识传递给ANN来提高ANN的性能。具有物理和现象学对微通道压力下降的相关性大大提高了ANN的性能和概括能力。最终结构由三个输入组成:混合蒸气质量,微通道内径和可用的压降相关性。结果表明,使用相关的信息方法获得的好处预测用于训练的实验数据和后验测试,平均相对误差(MRE)为6%,低于Sun&Mishima相关性13%。此外,这种方法可以扩展到其他混合物和实验设置,这是使用ANN用于传热应用的其他方法中的缺少特征。
translated by 谷歌翻译
动态磁共振成像(MRI)是一种流行的医学成像技术,可生成组织和器官内部对比度材料流动的图像序列。但是,仅在少数可行性研究中证明了它在通过食道运动中的成像运动中的应用,并且相对尚未探索。在这项工作中,我们提出了一个称为力学的MRI(MRI-MEC)的计算框架,该计算框架增强了该能力,从而增加了动态MRI在诊断食管疾病中的适用性。菠萝汁用作动态MRI的吞咽对比材料,MRI图像序列被用作MRI-MECH的输入。 MRI-MECH将食道建模为柔性的一维管,弹性管壁遵循线性管定律。然后,通过一维质量和动量保护方程式,通过食道流动。这些方程是使用物理信息的神经网络(PINN)求解的。 PINN最大程度地减少了MRI测量和模型预测之间的差异,以确保始终遵循流体流量问题的物理。 MRI-Mech计算了食管转运期间的流体速度和压力,并通过计算壁刚度和主动弛豫来估计食道健康的机械健康。此外,MRI-Mech预测了在排空过程中有关下食管下括约肌的缺失信息,这证明了其适用于缺少数据或图像分辨率差的方案。除了基于食管机械健康的定量估计值来改善临床决策外,MRI-MECH还可以增强用于应用其他医学成像方式以增强其功能。
translated by 谷歌翻译
Surrogate models are necessary to optimize meaningful quantities in physical dynamics as their recursive numerical resolutions are often prohibitively expensive. It is mainly the case for fluid dynamics and the resolution of Navier-Stokes equations. However, despite the fast-growing field of data-driven models for physical systems, reference datasets representing real-world phenomena are lacking. In this work, we develop AirfRANS, a dataset for studying the two-dimensional incompressible steady-state Reynolds-Averaged Navier-Stokes equations over airfoils at a subsonic regime and for different angles of attacks. We also introduce metrics on the stress forces at the surface of geometries and visualization of boundary layers to assess the capabilities of models to accurately predict the meaningful information of the problem. Finally, we propose deep learning baselines on four machine learning tasks to study AirfRANS under different constraints for generalization considerations: big and scarce data regime, Reynolds number, and angle of attack extrapolation.
translated by 谷歌翻译
Computational fluid dynamics (CFD) is a valuable asset for patient-specific cardiovascular-disease diagnosis and prognosis, but its high computational demands hamper its adoption in practice. Machine-learning methods that estimate blood flow in individual patients could accelerate or replace CFD simulation to overcome these limitations. In this work, we consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models. We employ group-equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes and makes efficient use of training data. We run experiments on a large dataset of synthetic coronary arteries and find that our method estimates directional wall shear stress (WSS) with an approximation error of 7.6% and normalised mean absolute error (NMAE) of 0.4% while up to two orders of magnitude faster than CFD. Furthermore, we show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions. These results demonstrate the potential of our proposed method as a plugin replacement for CFD in the personalised prediction of hemodynamic vector and scalar fields.
translated by 谷歌翻译
浅水方程是大多数洪水和河流液压分析模型的基础。这些基于物理的模型通常昂贵且速度慢,因此不适合实时预测或参数反转。有吸引力的替代方案是代理模型。这项工作基于深度学习介绍了高效,准确,灵活的代理模型,NN-P2P,它可以对非结构化或不规则网格进行点对点预测。评估新方法并与基于卷积神经网络(CNNS)的现有方法进行比较,其只能在结构化或常规网格上进行图像到图像预测。在NN-P2P中,输入包括空间坐标和边界特征,可以描述液压结构的几何形状,例如桥墩。所有代理模型都在预测培训域中不同类型的码头周围的流程中。然而,当执行空间推断时,只有NN-P2P工作很好。基于CNN的方法的限制源于其光栅图像性质,其无法捕获边界几何形状和流量,这对流体动力学至关重要。 NN-P2P在通过神经网络预测码头周围的流量方面也具有良好的性能。 NN-P2P模型还严格尊重保护法。通过计算拖动系数$ C_D $的拖动系数$ C_D $ C_D $与码头长度/宽度比的新线性关系来证明拟议的代理模型的应用。
translated by 谷歌翻译
心血管血流动力学的变化与主动脉反流(AR)的发展密切相关,一种瓣膜心脏病。源自血液流量的压力梯度用于表示AR发作并评估其严重程度。可以使用四维(4D)流磁共振成像(MRI)来非侵入地获得这些度量,其中精度主要取决于空间分辨率。然而,分辨率不足通常由4D流动MRI和复杂的AR血流动力学的限制产生。为了解决这个问题,将计算流体动力学模拟转化为合成4D流动MRI数据,并用于培训各种神经网络。这些网络生成了超级分辨率,具有upsample因子的全场相位图像为4.结果显示速度误差,高结构相似度得分和从以前的工作的改进的学习能力。在两组体内4D流动MRI数据上进行进一步验证,并在去噪流量图像中展示了成功。这种方法呈现了以非侵入性方式全面分析AR血液动力学的机会。
translated by 谷歌翻译
自从Navier Stokes方程的推导以来,已经有可能在数值上解决现实世界的粘性流问题(计算流体动力学(CFD))。然而,尽管中央处理单元(CPU)的性能取得了迅速的进步,但模拟瞬态流量的计算成本非常小,时间/网格量表物理学仍然是不现实的。近年来,机器学习(ML)技术在整个行业中都受到了极大的关注,这一大浪潮已经传播了流体动力学界的各种兴趣。最近的ML CFD研究表明,随着数据驱动方法的训练时间和预测时间之间的间隔增加,完全抑制了误差的增加是不现实的。应用ML的实用CFD加速方法的开发是剩余的问题。因此,这项研究的目标是根据物理信息传递学习制定现实的ML策略,并使用不稳定的CFD数据集验证了该策略的准确性和加速性能。该策略可以在监视跨耦合计算框架中管理方程的残差时确定转移学习的时间。因此,我们的假设是可行的,即连续流体流动时间序列的预测是可行的,因为中间CFD模拟定期不仅减少了增加残差,还可以更新网络参数。值得注意的是,具有基于网格的网络模型的交叉耦合策略不会损害计算加速度的仿真精度。在层流逆流CFD数据集条件下,该模拟加速了1.8次,包括参数更新时间。此可行性研究使用了开源CFD软件OpenFOAM和开源ML软件TensorFlow。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
We develop a wall model for large-eddy simulation (LES) that takes into account various pressure-gradient effects using multi-agent reinforcement learning (MARL). The model is trained using low-Reynolds-number flow over periodic hills with agents distributed on the wall along the computational grid points. The model utilizes a wall eddy-viscosity formulation as the boundary condition, which is shown to provide better predictions of the mean velocity field, rather than the typical wall-shear stress formulation. Each agent receives states based on local instantaneous flow quantities at an off-wall location, computes a reward based on the estimated wall-shear stress, and provides an action to update the wall eddy viscosity at each time step. The trained wall model is validated in wall-modeled LES (WMLES) of flow over periodic hills at higher Reynolds numbers, and the results show the effectiveness of the model on flow with pressure gradients. The analysis of the trained model indicates that the model is capable of distinguishing between the various pressure gradient regimes present in the flow.
translated by 谷歌翻译
This work presents a set of neural network (NN) models specifically designed for accurate and efficient fluid dynamics forecasting. In this work, we show how neural networks training can be improved by reducing data complexity through a modal decomposition technique called higher order dynamic mode decomposition (HODMD), which identifies the main structures inside flow dynamics and reconstructs the original flow using only these main structures. This reconstruction has the same number of samples and spatial dimension as the original flow, but with a less complex dynamics and preserving its main features. We also show the low computational cost required by the proposed NN models, both in their training and inference phases. The core idea of this work is to test the limits of applicability of deep learning models to data forecasting in complex fluid dynamics problems. Generalization capabilities of the models are demonstrated by using the same neural network architectures to forecast the future dynamics of four different multi-phase flows. Data sets used to train and test these deep learning models come from Direct Numerical Simulations (DNS) of these flows.
translated by 谷歌翻译
本文介绍了一个新颖的神经网络 - 流程完成网络(FCN) - 以从基于图形卷积注意网络的不完整数据中推断出流体动力学,包括流场和作用于身体的力。 FCN由几个图卷积层和空间注意层组成。它旨在推断与涡流力图(VFM)方法结合使用时流场的速度场和涡流力的贡献。与流体动力学中采用的其他神经网络相比,FCN能够处理两个结构化数据和非结构化数据。拟议的FCN的性能通过圆柱周围流场的计算流体动力学(CFD)数据进行评估。我们的模型预测的力系数对直接从CFD获得的工具进行了估算。此外,结果表明,我们的模型同时使用存在的流场信息和梯度信息,比传统的基于基于的基于传统的神经网络(CNN)和深神经网络(DNN)模型更有性能。具体而言,在不同雷诺数数字和培训数据集的不同比例的所有第三酶中,结果表明,在测试数据集中,提议的FCN在测试数据集中达到了5.86%的最大规范均值误差,该误差远低于基于Thetradientional CNN的和TheTraDientional CNN的最大正方形误差基于DNN的模型(分别为42.32%和15.63%)。
translated by 谷歌翻译
In this paper, negatively inclined buoyant jets, which appear during the discharge of wastewater from processes such as desalination, are observed. To minimize harmful effects and assess environmental impact, a detailed numerical investigation is necessary. The selection of appropriate geometry and working conditions for minimizing such effects often requires numerous experiments and numerical simulations. For this reason, the application of machine learning models is proposed. Several models including Support Vector Regression, Artificial Neural Networks, Random Forests, XGBoost, CatBoost and LightGBM were trained. The dataset was built with numerous OpenFOAM simulations, which were validated by experimental data from previous research. The best prediction was obtained by Artificial Neural Network with an average of R2 0.98 and RMSE 0.28. In order to understand the working of the machine learning model and the influence of all parameters on the geometrical characteristics of inclined buoyant jets, the SHAP feature interpretation method was used.
translated by 谷歌翻译
机器学习正迅速成为科学计算的核心技术,并有许多机会推进计算流体动力学领域。从这个角度来看,我们强调了一些潜在影响最高的领域,包括加速直接数值模拟,以改善湍流闭合建模,并开发增强的减少订单模型。我们还讨论了机器学习的新兴领域,这对于计算流体动力学以及应考虑的一些潜在局限性是有希望的。
translated by 谷歌翻译
We describe a Physics-Informed Neural Network (PINN) that simulates the flow induced by the astronomical tide in a synthetic port channel, with dimensions based on the Santos - S\~ao Vicente - Bertioga Estuarine System. PINN models aim to combine the knowledge of physical systems and data-driven machine learning models. This is done by training a neural network to minimize the residuals of the governing equations in sample points. In this work, our flow is governed by the Navier-Stokes equations with some approximations. There are two main novelties in this paper. First, we design our model to assume that the flow is periodic in time, which is not feasible in conventional simulation methods. Second, we evaluate the benefit of resampling the function evaluation points during training, which has a near zero computational cost and has been verified to improve the final model, especially for small batch sizes. Finally, we discuss some limitations of the approximations used in the Navier-Stokes equations regarding the modeling of turbulence and how it interacts with PINNs.
translated by 谷歌翻译
通过Navier-Stokes方程的数值解决方案的计算流体动力学(CFD)仿真是从工程设计到气候建模的广泛应用中的重要工具。然而,CFD代码所需的计算成本和内存需求对于实际兴趣的流动可能变得非常高,例如在空气动力学形状优化中。该费用与流体流动控制方程的复杂性有关,其包括具有困难的解决方案的非线性部分衍生术语,导致长的计算时间和限制在迭代设计过程中可以测试的假设的数量。因此,我们提出了DeepCFD:基于卷积神经网络(CNN)的模型,其有效地近似于均匀稳态流动问题的解决方案。所提出的模型能够直接从使用最先进的CFD代码生成的地面真实数据的速度和压力场的完整解决方案的完整解决方案。使用DeepCFD,与标准CFD方法以低误差率的成本相比,我们发现高达3个数量级的加速。
translated by 谷歌翻译
我们提出了使用复合曲线曲线产生的复杂鳍几何形状的传​​热和压降预测的替代模型。热设计过程包括复杂,计算昂贵且耗时的迭代高保真模拟。随着机器学习算法以及图形处理单元(GPU)的进步,我们可以利用GPU的并行处理体系结构,而不仅仅是仅依靠CPU来加速热流体模拟。在这项研究中,卷积神经网络(CNN)用于直接从保存为图像的拓扑中预测计算流体动力学(CFD)的结果。研究了带有单个鳍和多个形态鳍的表壳。为案例提供了单个FIN设计的Xpection网络和常规CNN的比较。结果表明,对于单鳍设计,尤其是使用Xception网络,观察到高精度的预测精度。增加设计自由到多个鳍片会增加预测的误差。然而,对于设计目的而言,这一错误仍在压降和传热估计中保持在3%之内。
translated by 谷歌翻译