Computational fluid dynamics (CFD) is a valuable asset for patient-specific cardiovascular-disease diagnosis and prognosis, but its high computational demands hamper its adoption in practice. Machine-learning methods that estimate blood flow in individual patients could accelerate or replace CFD simulation to overcome these limitations. In this work, we consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models. We employ group-equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes and makes efficient use of training data. We run experiments on a large dataset of synthetic coronary arteries and find that our method estimates directional wall shear stress (WSS) with an approximation error of 7.6% and normalised mean absolute error (NMAE) of 0.4% while up to two orders of magnitude faster than CFD. Furthermore, we show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions. These results demonstrate the potential of our proposed method as a plugin replacement for CFD in the personalised prediction of hemodynamic vector and scalar fields.
translated by 谷歌翻译
计算流体动力学(CFD)是一种有价值的工具,用于动脉中血流动力学的个性化,非侵入性评估,但其复杂性和耗时的大自然在实践中禁止大规模使用。最近,已经研究了利用深度学习进行CFD参数的快速估计,如表面网格上的壁剪切应力(WSS)。然而,现有方法通常取决于表面网格的手工制作的重新参数化以匹配卷积神经网络架构。在这项工作中,我们建议使用Mesh卷积神经网络,该网状神经网络直接在CFD中使用的相同的有限元表面网格操作。我们在使用从CFD模拟中获得的地面真理培训并在两种合成冠状动脉模型的两种数据集上培训和评估我们的方法。我们表明我们灵活的深度学习模型可以准确地预测该表面网上的3D WSS矢量。我们的方法在少于5分钟内处理新网格,始终如一地实现$ \ LEQ $ 1.6 [%]的标准化平均值误差,并且在保持测试集中的90.5 [%]中位近似精度为90.5 [%]的峰值,比较以前发表的工作。这证明了CFD代理建模的可行性,使用网状卷积神经网络进行动脉模型中的血流动力学参数估计。
translated by 谷歌翻译
定义网格上卷积的常用方法是将它们作为图形解释并应用图形卷积网络(GCN)。这种GCNS利用各向同性核,因此对顶点的相对取向不敏感,从而对整个网格的几何形状。我们提出了规范的等分性网状CNN,它概括了GCNS施加各向异性仪表等级核。由于产生的特征携带方向信息,我们引入了通过网格边缘并行传输特征来定义的几何消息传递方案。我们的实验验证了常规GCN和其他方法的提出模型的显着提高的表达性。
translated by 谷歌翻译
事实证明,与对称性的对称性在深度学习研究中是一种强大的归纳偏见。关于网格处理的最新著作集中在各种天然对称性上,包括翻译,旋转,缩放,节点排列和仪表变换。迄今为止,没有现有的体系结构与所有这些转换都不相同。在本文中,我们提出了一个基于注意力的网格数据的架构,该体系结构与上述所有转换相似。我们的管道依赖于相对切向特征的使用:一种简单,有效,等效性的替代品,可作为输入作为输入。有关浮士德和TOSCA数据集的实验证实,我们提出的架构在这些基准测试中的性能提高了,并且确实是对各种本地/全球转换的均等,因此具有强大的功能。
translated by 谷歌翻译
基于简单的扩散层对空间通信非常有效的洞察力,我们对3D表面进行深度学习的新的通用方法。由此产生的网络是自动稳健的,以改变表面的分辨率和样品 - 一种对实际应用至关重要的基本属性。我们的网络可以在各种几何表示上离散化,例如三角网格或点云,甚至可以在一个表示上培训然后应用于另一个表示。我们优化扩散的空间支持,作为连续网络参数,从纯粹的本地到完全全球范围,从而消除手动选择邻域大小的负担。该方法中唯一的其他成分是在每个点处独立地施加的多层的Perceptron,以及用于支持方向滤波器的空间梯度特征。由此产生的网络简单,坚固,高效。这里,我们主要专注于三角网格表面,并且展示了各种任务的最先进的结果,包括表面分类,分割和非刚性对应。
translated by 谷歌翻译
预测具有微观结构的材料的代表性样品的演变是均质化的基本问题。在这项工作中,我们提出了一种图形卷积神经网络,其利用直接初始微结构的离散化表示,而无需分割或聚类。与基于特征和基于像素的卷积神经网络模型相比,所提出的方法具有许多优点:(a)它是深入的,因为它不需要卵容,但可以从中受益,(b)它具有简单的实现使用标准卷积滤波器和层,(c)它在没有插值的非结构化和结构网格数据上本身工作(与基于像素的卷积神经网络不同),并且(d)它可以保留与其他基于图形的卷积神经网络等旋转不变性。我们展示了所提出的网络的性能,并将其与传统的基于像素的卷积神经网络模型和基于传统的像素的卷积神经网络模型进行比较,并且在多个大型数据集上的基于特征的图形卷积神经网络。
translated by 谷歌翻译
部分微分方程(PDE)在许多复杂动态过程的数学建模中发挥着主导作用。解决这些PDE通常需要预定的计算成本,特别是当必须对不同的参数或条件进行多次评估时。在培训之后,神经运营商可以比传统的PDE溶剂更快地提供PDES解决方案。在这项工作中,检查两个神经运营商的不变性属性和计算复杂性,用于标量数量的运输PDE。基于图形内核网络(GKN)的神经运算符在图形结构数据上运行,以合并非识别依赖性。在这里,我们提出了改进的GKN制定以实现帧不变性。传染媒介云神经网络(VCNN)是一个具有嵌入式帧不变性的替代神经运算符,可在点云数据上运行。基于GKN的神经运营商与VCNN相比,略微更好地预测性能。然而,GKN需要过度高的计算成本,与VCNN的线性增加相比,随着越来越多的离散物对象而直角增加。
translated by 谷歌翻译
The principle of equivariance to symmetry transformations enables a theoretically grounded approach to neural network architecture design. Equivariant networks have shown excellent performance and data efficiency on vision and medical imaging problems that exhibit symmetries. Here we show how this principle can be extended beyond global symmetries to local gauge transformations. This enables the development of a very general class of convolutional neural networks on manifolds that depend only on the intrinsic geometry, and which includes many popular methods from equivariant and geometric deep learning.We implement gauge equivariant CNNs for signals defined on the surface of the icosahedron, which provides a reasonable approximation of the sphere. By choosing to work with this very regular manifold, we are able to implement the gauge equivariant convolution using a single conv2d call, making it a highly scalable and practical alternative to Spherical CNNs. Using this method, we demonstrate substantial improvements over previous methods on the task of segmenting omnidirectional images and global climate patterns.
translated by 谷歌翻译
动态MRI可以捕获具有高对比度的软组织器官中的时间解剖变化,但是获得的序列通常遭受有限的体积覆盖,这使得器官形状轨迹的高分辨率重建在时间研究中的主要挑战。由于腹部器官形状的变异性跨越时间和受试者,本研究的目的是朝向3D致密速度测量来完全覆盖整个表面并提取有意义的特征,其特征在于观察到的器官变形并实现临床作用或决定。我们在深呼吸运动期间提出了一种用于表征膀胱表面动力学的管道。对于紧凑的形状表示,首先使用重建的时间体积来使用LDDMM框架建立专用的动态4D网状序列。然后,我们从诸如网格伸长和失真的机械参数执行器官动力学的统计表征。由于我们将器官引用作为非平面,因此我们还使用平均曲率变化为度量来量化表面演变。然而,曲率的数值计算强烈地取决于表面参数化。为了应对这一依赖性,我们采用了一种用于表面变形分析的新方法。独立于参数化并最小化测地曲线的长度,通过最小化Dirichlet能量,它使表面曲线平滑地朝向球体。 eulerian PDE方法用于从曲线缩短流中导出形状描述符。使用Laplace Beltrami操作员特征函数来计算各个运动模式之间的接口,用于球形映射。用于提取用于局部控制的模拟形状轨迹的表征相关曲线的应用演示了所提出的形状描述符的稳定性。
translated by 谷歌翻译
Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them.Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field.
translated by 谷歌翻译
Surrogate models are necessary to optimize meaningful quantities in physical dynamics as their recursive numerical resolutions are often prohibitively expensive. It is mainly the case for fluid dynamics and the resolution of Navier-Stokes equations. However, despite the fast-growing field of data-driven models for physical systems, reference datasets representing real-world phenomena are lacking. In this work, we develop AirfRANS, a dataset for studying the two-dimensional incompressible steady-state Reynolds-Averaged Navier-Stokes equations over airfoils at a subsonic regime and for different angles of attacks. We also introduce metrics on the stress forces at the surface of geometries and visualization of boundary layers to assess the capabilities of models to accurately predict the meaningful information of the problem. Finally, we propose deep learning baselines on four machine learning tasks to study AirfRANS under different constraints for generalization considerations: big and scarce data regime, Reynolds number, and angle of attack extrapolation.
translated by 谷歌翻译
3D网格的几何特征学习是计算机图形的核心,对于许多视觉应用非常重要。然而,由于缺乏所需的操作和/或其有效的实现,深度学习目前滞后于异构3D网格的层次建模。在本文中,我们提出了一系列模块化操作,以实现异构3D网格的有效几何深度学习。这些操作包括网格卷曲,(UN)池和高效的网格抽取。我们提供这些操作的开源实施,统称为\ Texit {Picasso}。 Picasso的网格抽取模块是GPU加速的模块,可以在飞行中加工一批用于深度学习的网格。我们(联合国)汇集操作在不同分辨率的网络层跨网络层计算新创建的神经元的功能。我们的网格卷曲包括FaceT2Vertex,Vertex2Facet和FaceT2Facet卷积,用于利用VMF混合物和重心插值来包含模糊建模。利用Picasso的模块化操作,我们贡献了一个新型的分层神经网络Picassonet-II,以了解3D网格的高度辨别特征。 Picassonet-II接受原始地理学和Mesh Facet的精细纹理作为输入功能,同时处理完整场景网格。我们的网络达到了各种基准的形状分析和场景的竞争性能。我们在github https://github.com/enyahermite/picasso发布Picasso和Picassonet-II。
translated by 谷歌翻译
\ emph {几何深度学习}(GDL)的最新进展显示了其提供强大数据驱动模型的潜力。这提供了探索从图形数据中\ emph {部分微分方程}(PDES)控制的物理系统的新方法的动力。然而,尽管做出了努力和最近的成就,但几个研究方向仍未开发,进步仍然远非满足现实现象的身体要求。主要障碍之一是缺乏基准数据集和常见的物理评估协议。在本文中,我们提出了一个2-D Graph-Mesh数据集,以研究High Reynolds制度的机翼上的气流(从$ 10^6 $及以后)。我们还对翼型上的应力力引入指标,以评估重要的物理量的GDL模型。此外,我们提供广泛的GDL基准。
translated by 谷歌翻译
包括协调性信息,例如位置,力,速度或旋转在计算物理和化学中的许多任务中是重要的。我们介绍了概括了等级图形网络的可控e(3)的等值图形神经网络(Segnns),使得节点和边缘属性不限于不变的标量,而是可以包含相协同信息,例如矢量或张量。该模型由可操纵的MLP组成,能够在消息和更新功能中包含几何和物理信息。通过可操纵节点属性的定义,MLP提供了一种新的Activation函数,以便与可转向功能字段一般使用。我们讨论我们的镜头通过等级的非线性卷曲镜头讨论我们的相关工作,进一步允许我们引脚点点的成功组件:非线性消息聚集在经典线性(可操纵)点卷积上改善;可操纵的消息在最近发送不变性消息的最近的等价图形网络上。我们展示了我们对计算物理学和化学的若干任务的方法的有效性,并提供了广泛的消融研究。
translated by 谷歌翻译
卷积神经网络(CNNS)在2D计算机视觉中取得了很大的突破。然而,它们的不规则结构使得难以在网格上直接利用CNNS的潜力。细分表面提供分层多分辨率结构,其中闭合的2 - 歧管三角网格中的每个面正恰好邻近三个面。本文推出了这两种观察,介绍了具有环形细分序列连接的3D三角形网格的创新和多功能CNN框架。在2D图像中的网格面和像素之间进行类比允许我们呈现网状卷积操作者以聚合附近面的局部特征。通过利用面部街区,这种卷积可以支持标准的2D卷积网络概念,例如,可变内核大小,步幅和扩张。基于多分辨率层次结构,我们利用汇集层,将四个面均匀地合并成一个和上采样方法,该方法将一个面分为四个。因此,许多流行的2D CNN架构可以容易地适应处理3D网格。可以通过自我参数化来回收具有任意连接的网格,以使循环细分序列连接,使子变量是一般的方法。广泛的评估和各种应用展示了SubDIVNet的有效性和效率。
translated by 谷歌翻译
给定部分微分方程(PDE),面向目标的误差估计使我们能够了解诊断数量的兴趣数量(QOI)或目标的错误如何发生并积累在数值近似中,例如使用有限元方法。通过将误差估计分解为来自各个元素的贡献,可以制定适应方法,该方法可以修改网格,以最大程度地减少所得QOI误差的目的。但是,标准误差估计公式涉及真实的伴随解决方案,这在实践中是未知的。因此,通常的做法是用“富集”的近似值(例如,在更高的空间或精制的网格上)近似。这样做通常会导致计算成本的显着增加,这可能是损害(面向目标)自适应模拟的竞争力的瓶颈。本文的核心思想是通过选择性更换昂贵的误差估计步骤,并使用适当的配置和训练的神经网络开发“数据驱动”目标的网格适应方法。这样,甚至可以在不构造富集空间的情况下获得误差估计器。此处采用了逐元构造,该元素构造与网格几何相关的各种参数的局部值和基础问题物理物理作为输入,并且对误差估计器的相应贡献作为输出。我们证明,这种方法能够以降低的计算成本获得相同的准确性,对于与潮汐涡轮机周围流动相关的自适应网格测试用例,这些测试用例是通过其下游唤醒相互作用的,以及农场的整体功率输出作为将其视为QOI。此外,我们证明了元素元素方法意味着培训成本相当低。
translated by 谷歌翻译
我们提出了一个机器学习框架,该框架将图像超分辨率技术与级别测量方法中的被动标量传输融为一体。在这里,我们研究是否可以计算直接数据驱动的校正,以最大程度地减少界面的粗晶石演化中的数值粘度。拟议的系统的起点是半拉格朗日配方。并且,为了减少数值耗散,我们引入了一个易于识别的多层感知器。该神经网络的作用是改善数值估计的表面轨迹。为此,它在单个时间范围内处理局部级别集,速度和位置数据,以便在移动前部附近的选择顶点。因此,我们的主要贡献是一种新型的机器学习调音算法,该算法与选择性重新融为一体并与常规对流交替运行,以保持调整后的界面轨迹平滑。因此,我们的程序比基于全卷卷积的应用更有效,因为它仅在自由边界周围集中计算工作。同样,我们通过各种测试表明,我们的策略有效地抵消了数值扩散和质量损失。例如,在简单的对流问题中,我们的方法可以达到与基线方案相同的精度,分辨率是分辨率的两倍,但成本的一小部分。同样,我们的杂种技术可以产生可行的固化前端,以进行结晶过程。另一方面,切向剪切流和高度变形的模拟会导致偏置伪像和推理恶化。同样,严格的设计速度约束可以将我们的求解器的应用限制为涉及快速接口更改的问题。在后一种情况下,我们已经确定了几个机会来增强鲁棒性,而没有放弃我们的方法的基本概念。
translated by 谷歌翻译
本构模型广泛用于在科学与工程中建模复杂系统,其中基于第一原则,解决良好的模拟通常是非常昂贵的。例如,在流体动力学中,需要构成型型号来描述非局部,未解决的物理学,例如湍流和层状湍流转变。然而,基于部分微分方程(PDE)的传统本构模型通常缺乏稳健性,并且太硬而无法容纳不同的校准数据集。我们提出了一种基于可以使用数据学习的矢量云神经网络的帧无关的非局部构成模型。该模型在基于其邻域中的流量信息的点处预测闭合变量。这种非本种信息由一组点表示,每个点具有附加到它的特征向量,因此输入被称为矢量云。云通过帧无关的神经网络映射到封闭变量,不变于协调转换和旋转以及云中点的排序。这样,网络可以处理任何数量的任意排列的网格点,因此适用于流体模拟中的非结构化网格。所提出的网络的优点是在参数化的周期山几何形状上的标量传输PDE上进行了说明。矢量云神经网络是一个有前途的工具,不仅是非本体构成型模型,而且还是作为不规则结构域的PDE的一般代理模型。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译