动态磁共振成像(MRI)是一种流行的医学成像技术,可生成组织和器官内部对比度材料流动的图像序列。但是,仅在少数可行性研究中证明了它在通过食道运动中的成像运动中的应用,并且相对尚未探索。在这项工作中,我们提出了一个称为力学的MRI(MRI-MEC)的计算框架,该计算框架增强了该能力,从而增加了动态MRI在诊断食管疾病中的适用性。菠萝汁用作动态MRI的吞咽对比材料,MRI图像序列被用作MRI-MECH的输入。 MRI-MECH将食道建模为柔性的一维管,弹性管壁遵循线性管定律。然后,通过一维质量和动量保护方程式,通过食道流动。这些方程是使用物理信息的神经网络(PINN)求解的。 PINN最大程度地减少了MRI测量和模型预测之间的差异,以确保始终遵循流体流量问题的物理。 MRI-Mech计算了食管转运期间的流体速度和压力,并通过计算壁刚度和主动弛豫来估计食道健康的机械健康。此外,MRI-Mech预测了在排空过程中有关下食管下括约肌的缺失信息,这证明了其适用于缺少数据或图像分辨率差的方案。除了基于食管机械健康的定量估计值来改善临床决策外,MRI-MECH还可以增强用于应用其他医学成像方式以增强其功能。
translated by 谷歌翻译
食管障碍的发病机制与食管壁力学有关。因此,要了解各种食管障碍背后的潜在基本机制,将基于食管壁力学的参数映射到与改变的推注途径和超级性IBP对应的生理和病理生理学条件至关重要。在这项工作中,我们提出了一种混合框架,将流体力学和机器学习结合,以识别各种食管障碍的底层物理,并将它们映射到我们称之为虚拟疾病景观(VDL)的参数空间上。一维逆模型处理来自食道诊断装置的输出,称为内窥镜功能腔成像探针(endoflip)来估计食道的机械“健康”,通过预测一组基于机械基的参数,例如食道壁刚度,肌肉收缩食管墙的模式和活跃放松。然后使用基于机械基的参数来训练由改变空间(VAE)组成的神经网络,其产生潜在空间和侧面网络,该侧面网络预测用于估计食道古代结动性的机械工作度量。潜在的矢量以及一组基于基于机械的参数定义VDL并形成与各种食管疾病相对应的簇。 VDL不仅区分不同的疾病,而且还可用于预测疾病进展及时。最后,我们还证明了该框架的临床适用性,用于估算治疗后治疗和追踪患者状况的有效性。
translated by 谷歌翻译
心血管血流动力学的变化与主动脉反流(AR)的发展密切相关,一种瓣膜心脏病。源自血液流量的压力梯度用于表示AR发作并评估其严重程度。可以使用四维(4D)流磁共振成像(MRI)来非侵入地获得这些度量,其中精度主要取决于空间分辨率。然而,分辨率不足通常由4D流动MRI和复杂的AR血流动力学的限制产生。为了解决这个问题,将计算流体动力学模拟转化为合成4D流动MRI数据,并用于培训各种神经网络。这些网络生成了超级分辨率,具有upsample因子的全场相位图像为4.结果显示速度误差,高结构相似度得分和从以前的工作的改进的学习能力。在两组体内4D流动MRI数据上进行进一步验证,并在去噪流量图像中展示了成功。这种方法呈现了以非侵入性方式全面分析AR血液动力学的机会。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
血流特征的预测对于了解血液动脉网络的行为至关重要,特别是在血管疾病(如狭窄)的存在下。计算流体动力学(CFD)提供了一种强大而有效的工具,可以确定包括网络内的压力和速度字段的这些特征。尽管该领域有许多研究,但CFD的极高计算成本导致研究人员开发新的平台,包括机器学习方法,而是以更低的成本提供更快的分析。在这项研究中,我们提出了一个深度神经网络框架,以预测冠状动脉网络中的流动行为,在存在像狭窄等异常存在下具有不同的性质。为此,使用合成数据训练人工神经网络(ANN)模型,使得它可以预测动脉网络内的压力和速度。培训神经网络所需的数据是从ABAQUS软件的特定特征的次数的CFD分析中获得了培训神经网络的数据。狭窄引起的血压下降,这是诊断心脏病诊断中最重要的因素之一,可以使用我们所提出的模型来了解冠状动脉的任何部分的几何和流动边界条件。使用Lad血管的三个实际几何形状来验证模型的效率。所提出的方法精确地预测了血流量的血流动力学行为。压力预测的平均精度为98.7%,平均速度幅度精度为93.2%。根据测试三个患者特定几何形状的模型的结果,模型可以被认为是有限元方法的替代方案以及其他难以实现的耗时数值模拟。
translated by 谷歌翻译
Solute transport in porous media is relevant to a wide range of applications in hydrogeology, geothermal energy, underground CO2 storage, and a variety of chemical engineering systems. Due to the complexity of solute transport in heterogeneous porous media, traditional solvers require high resolution meshing and are therefore expensive computationally. This study explores the application of a mesh-free method based on deep learning to accelerate the simulation of solute transport. We employ Physics-informed Neural Networks (PiNN) to solve solute transport problems in homogeneous and heterogeneous porous media governed by the advection-dispersion equation. Unlike traditional neural networks that learn from large training datasets, PiNNs only leverage the strong form mathematical models to simultaneously solve for multiple dependent or independent field variables (e.g., pressure and solute concentration fields). In this study, we construct PiNN using a periodic activation function to better represent the complex physical signals (i.e., pressure) and their derivatives (i.e., velocity). Several case studies are designed with the intention of investigating the proposed PiNN's capability to handle different degrees of complexity. A manual hyperparameter tuning method is used to find the best PiNN architecture for each test case. Point-wise error and mean square error (MSE) measures are employed to assess the performance of PiNNs' predictions against the ground truth solutions obtained analytically or numerically using the finite element method. Our findings show that the predictions of PiNN are in good agreement with the ground truth solutions while reducing computational complexity and cost by, at least, three orders of magnitude.
translated by 谷歌翻译
物理知识的神经网络(PINNS)由于能力将物理定律纳入模型,在工程的各个领域都引起了很多关注。但是,对机械和热场之间涉及耦合的工业应用中PINN的评估仍然是一个活跃的研究主题。在这项工作中,我们提出了PINNS在非牛顿流体热机械问题上的应用,该问题通常在橡胶日历过程中考虑。我们证明了PINN在处理逆问题和不良问题时的有效性,这些问题是不切实际的,可以通过经典的数值离散方法解决。我们研究了传感器放置的影响以及无监督点对PINNS性能的分布,即从某些部分数据中推断出隐藏的物理领域的问题。我们还研究了PINN从传感器捕获的测量值中识别未知物理参数的能力。在整个工作中,还考虑了嘈杂测量的效果。本文的结果表明,在识别问题中,PINN可以仅使用传感器上的测量结果成功估算未知参数。在未完全定义边界条件的不足问题中,即使传感器的放置和无监督点的分布对PINNS性能产生了很大的影响,我们表明该算法能够从局部测量中推断出隐藏的物理。
translated by 谷歌翻译
脑出血(ICH)是最致命的中风子类型,死亡率高达52%。由于颅骨切开术引起的潜在皮质破坏,保守管理(注意等待)历史上一直是一种常见的治疗方法。最小的侵入性疏散最近已成为一种可公认的治疗方法,用于体积30-50 mL的深座性血肿的患者,但适当的可视化和工具敏感性仍然受到常规内窥镜方法的限制,尤其是较大的血肿体积(> 50 mL)。在本文中,我们描述了Aspihre的发展(脑部出血机器人疏散的手术平台),这是有史以来的第一个同心管机器人,该机器人使用现成的塑料管来进行MR引导ICH撤离,改善工具敏感性和程序可视化。机器人运动学模型是基于基于校准的方法和试管力学建模开发的,使模型可以考虑可变曲率和扭转偏转。使用可变增益PID算法控制旋转精度为0.317 +/- 0.3度。硬件和理论模型在一系列系统的基准和MRI实验中进行了验证,导致1.39 +\ -0.54 mm的管尖的位置精度。验证靶向准确性后,在MR引导的幻影凝块疏散实验中测试了机器人的疏散功效。该机器人能够在5分钟内撤离最初38.36 mL的凝块,使残留血肿为8.14 mL,远低于15 mL指南,表明良好的后疏散临床结果。
translated by 谷歌翻译
在硅组织模型中,可以评估磁共振成像的定量模型。这包括对成像生物标志物和组织微结构参数的验证和灵敏度分析。我们提出了一种新的方法来生成心肌微结构的现实数值幻影。我们扩展了以前的研究,该研究考虑了心肌细胞的变异性,心肌细胞(插入式椎间盘)之间的水交换,心肌微结构混乱和四个钣金方向。在该方法的第一阶段,心肌细胞和钣金是通过考虑心肌到骨膜细胞连接的形状变异性和插入式椎间盘而产生的。然后,将薄板汇总和定向在感兴趣的方向上。我们的形态计量学研究表明,数值和真实(文献)心肌细胞数据的体积,长度以及一级和次要轴的分布之间没有显着差异($ p> 0.01 $)。结构相关性分析证实了硅内组织与实际组织的混乱类别相同。此外,心肌细胞的模拟螺旋角(HA)和输入HA(参考值)之间的绝对角度差($ 4.3^\ Circ \ PM 3.1^\ Circ $)与所测量HA之间的绝对角差有很好的一致性使用实验性心脏扩散张量成像(CDTI)和组织学(参考值)(Holmes等,2000)($ 3.7^\ Circ \ PM6.4^\ Circ $)和(Scollan等,1998)($ 4.9) ^\ circ \ pm 14.6^\ circ $)。使用结构张量成像(黄金标准)和实验性CDTI,输入和模拟CDTI的特征向量和模拟CDTI的角度之间的角度距离小于测量角度之间的角度距离。这些结果证实,所提出的方法比以前的研究可以为心肌产生更丰富的数值幻象。
translated by 谷歌翻译
X射线微型计算机断层摄影成像中存在固有的视野和分辨率折衷,这限制了多尺寸多孔系统的表征,分析和模型开发。在本文中,我们通过开发3D增强的深层超分辨率(EDSR)卷积神经网络来克服这些权衡来通过来自低分辨率数据的大型空间尺度创建增强的高分辨率数据。配对高分辨率(HR,2 $ \ MU $ M)和低分辨率(LR,6 $ \ MU $ M)来自Bentheimer Rock样本的图像数据用于培训网络。来自训练样本的未见LR和HR数据以及具有不同微结构的另一个样本,用于验证具有各种度量的网络:文本分析,分段行为和孔网络模型(PNM)多相流模拟。经过验证的EDSR网络用于为每个长度为6-7厘米的全核样品生成约1000个高分辨率转速子图像(总图像大小为约6000x6000x32000体素)。每个子培养物都具有从PNMS预测的不同的岩石物理特性,它们组合以创建每个样本的3D连续级模型。在一系列分数流动下模拟低毛细管数不混溶的流动,并直接在1:1的基础上与实验压力和3D饱和度进行比较。 EDSR产生的模型比在存在异质性存在下预测实验行为的基础LR模型更准确,特别是在遇到孔隙尺寸的广泛分布的流动状态下。该模型通常在预测到在实验重复性和三个数量级的实验重复性和相对渗透率内的饱和度准确。所示的工作流程是一个完全预测的,无需校准,并且打开了在真正的多尺度异构系统中的图像,模拟和分析流动的可能性。
translated by 谷歌翻译
深度学习的繁荣激发了渴望整合这两个领域的计算流体动力学的研究人员和实践者。PINN(物理信息神经网络)方法就是这样的尝试。尽管文献中的大多数报告都显示出应用PINN方法的积极结果,但我们对其进行了实验扼杀了这种乐观。这项工作介绍了我们使用PINN解决两个基本流量问题的不成功的故事:2D Taylor-Green Vortex at $ re = 100 $ = 100 $和2D缸流,$ re re = 200 $。 Pinn方法解决了2D Taylor-Green涡流问题,并以可接受的结果为基础,我们将这种流程作为精度和性能基准。 Pinn方法的准确性需要大约32个小时的训练,以使$ 16 \ times 16 $有限差异模拟的准确性不到20秒。另一方面,2D气缸流甚至没有导致物理溶液。 Pinn方法的表现像稳态的求解器,没有捕获涡流脱落现象。通过分享我们的经验,我们要强调的是,Pinn方法仍然是一种正在进行的工作。需要更多的工作来使Pinn对于现实世界中的问题可行。
translated by 谷歌翻译
Computational fluid dynamics (CFD) is a valuable asset for patient-specific cardiovascular-disease diagnosis and prognosis, but its high computational demands hamper its adoption in practice. Machine-learning methods that estimate blood flow in individual patients could accelerate or replace CFD simulation to overcome these limitations. In this work, we consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models. We employ group-equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes and makes efficient use of training data. We run experiments on a large dataset of synthetic coronary arteries and find that our method estimates directional wall shear stress (WSS) with an approximation error of 7.6% and normalised mean absolute error (NMAE) of 0.4% while up to two orders of magnitude faster than CFD. Furthermore, we show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions. These results demonstrate the potential of our proposed method as a plugin replacement for CFD in the personalised prediction of hemodynamic vector and scalar fields.
translated by 谷歌翻译
我们为从嘈杂和稀疏的相位对比度磁共振信号重建速度场的物理学压缩传感(图片)方法。该方法解决了逆向纳维尔的边界值问题,这使我们可以共同重建和分割速度场,同时推断隐藏量(例如流体力压力和壁剪应力)。使用贝叶斯框架,我们通过以高斯随机字段的形式引入有关未知参数的先验信息来使问题正常。使用Navier-Stokes问题,基于能量的分割功能,并要求重建与$ K $ -SPACE信号一致。我们创建了一种解决此重建问题的算法,并通过收敛喷嘴测试流量的噪声和稀疏$ K $空间信号。我们发现该方法能够从稀疏采样(15%$ k $ - 空间覆盖范围),低($ \ sim $$ 10 $ 10 $)信噪比(SNR)信号(SNR)信号和速度区域重建和细分速度字段。重建的速度场与来自相同流量的全部采样(100%$ k $ - 空间覆盖范围)高($> 40 $)SNR信号进行了很好的比较。
translated by 谷歌翻译
We describe a Physics-Informed Neural Network (PINN) that simulates the flow induced by the astronomical tide in a synthetic port channel, with dimensions based on the Santos - S\~ao Vicente - Bertioga Estuarine System. PINN models aim to combine the knowledge of physical systems and data-driven machine learning models. This is done by training a neural network to minimize the residuals of the governing equations in sample points. In this work, our flow is governed by the Navier-Stokes equations with some approximations. There are two main novelties in this paper. First, we design our model to assume that the flow is periodic in time, which is not feasible in conventional simulation methods. Second, we evaluate the benefit of resampling the function evaluation points during training, which has a near zero computational cost and has been verified to improve the final model, especially for small batch sizes. Finally, we discuss some limitations of the approximations used in the Navier-Stokes equations regarding the modeling of turbulence and how it interacts with PINNs.
translated by 谷歌翻译
动态MRI可以捕获具有高对比度的软组织器官中的时间解剖变化,但是获得的序列通常遭受有限的体积覆盖,这使得器官形状轨迹的高分辨率重建在时间研究中的主要挑战。由于腹部器官形状的变异性跨越时间和受试者,本研究的目的是朝向3D致密速度测量来完全覆盖整个表面并提取有意义的特征,其特征在于观察到的器官变形并实现临床作用或决定。我们在深呼吸运动期间提出了一种用于表征膀胱表面动力学的管道。对于紧凑的形状表示,首先使用重建的时间体积来使用LDDMM框架建立专用的动态4D网状序列。然后,我们从诸如网格伸长和失真的机械参数执行器官动力学的统计表征。由于我们将器官引用作为非平面,因此我们还使用平均曲率变化为度量来量化表面演变。然而,曲率的数值计算强烈地取决于表面参数化。为了应对这一依赖性,我们采用了一种用于表面变形分析的新方法。独立于参数化并最小化测地曲线的长度,通过最小化Dirichlet能量,它使表面曲线平滑地朝向球体。 eulerian PDE方法用于从曲线缩短流中导出形状描述符。使用Laplace Beltrami操作员特征函数来计算各个运动模式之间的接口,用于球形映射。用于提取用于局部控制的模拟形状轨迹的表征相关曲线的应用演示了所提出的形状描述符的稳定性。
translated by 谷歌翻译
我们提出了Fibernet,一种估计\ emph {in-Vivo}的方法,从电动激活的多个导管记录中,人心房的心脏纤维结构。心脏纤维在心脏的电力功能中起着核心作用,但是它们很难确定体内,因此在现有心脏模型中很少有特定于患者的特定于患者。 Fibernet通过解决物理知识的神经网络的逆问题来学习纤维布置。逆问题等于从一组稀疏激活图中识别心脏传播模型的传导速度张量。多个地图的使用可以同时识别传导速度张量(包括局部纤维角)的所有组件。我们对合成2-D和3-D示例,扩散张量纤维和患者特异性病例进行广泛测试。我们表明,在存在噪声的情况下,也足以准确捕获纤维。随着地图的较少,正则化的作用变得突出。此外,我们表明拟合的模型可以稳健地重现看不见的激活图。我们设想,纤维网将帮助创建特定于患者的个性化医学模型。完整代码可在http://github.com/fsahli/fibernet上找到。
translated by 谷歌翻译
了解添加剂制造(AM)过程的热行为对于增强质量控制和实现定制过程设计至关重要。大多数纯粹基于物理的计算模型都有密集的计算成本,因此不适合在线控制和迭代设计应用程序。数据驱动的模型利用最新开发的计算工具可以作为更有效的替代品,但通常会在大量仿真数据上进行培训,并且通常无法有效使用小但高质量的实验数据。在这项工作中,我们使用物理知识的神经网络开发了AM过程的基于混合物理学的热建模方法。具体而言,通过红外摄像机测量的部分观察到的温度数据与物理定律结合在一起,以预测全场温度病史并发现未知的材料和过程参数。在数值和实验示例中,添加辅助训练数据并使用转移学习技术在训练效率和预测准确性方面的有效性,以及具有部分观察到的数据的未知参数的能力。结果表明,混合热模型可以有效地识别未知参数并准确捕获全田温度,因此它具有在AM的迭代过程设计和实时过程控制中的潜力。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
虽然在各种应用中广泛使用刚性机器人,但它们在他们可以执行的任务中受到限制,并且在密切的人机交互中可以保持不安全。另一方面,软机器鞋面超越了刚性机器人的能力,例如与工作环境,自由度,自由度,制造成本和与环境安全互动的兼容性。本文研究了纤维增强弹性机壳(释放)作为一种特定类型的软气动致动器的行为,可用于软装饰器。创建动态集参数模型以在各种操作条件下模拟单一免费的运动,并通知控制器的设计。所提出的PID控制器使用旋转角度来控制多项式函数之后的自由到限定的步进输入或轨迹的响应来控制末端执行器的方向。另外,采用有限元分析方法,包括释放的固有非线性材料特性,精确地评估释放的各种参数和配置。该工具还用于确定模块中多个释放的工作空间,这基本上是软机械臂的构建块。
translated by 谷歌翻译