我们提出了使用复合曲线曲线产生的复杂鳍几何形状的传​​热和压降预测的替代模型。热设计过程包括复杂,计算昂贵且耗时的迭代高保真模拟。随着机器学习算法以及图形处理单元(GPU)的进步,我们可以利用GPU的并行处理体系结构,而不仅仅是仅依靠CPU来加速热流体模拟。在这项研究中,卷积神经网络(CNN)用于直接从保存为图像的拓扑中预测计算流体动力学(CFD)的结果。研究了带有单个鳍和多个形态鳍的表壳。为案例提供了单个FIN设计的Xpection网络和常规CNN的比较。结果表明,对于单鳍设计,尤其是使用Xception网络,观察到高精度的预测精度。增加设计自由到多个鳍片会增加预测的误差。然而,对于设计目的而言,这一错误仍在压降和传热估计中保持在3%之内。
translated by 谷歌翻译
在整个设计社区中,生成设计一直在增长,作为设计空间探索的可行方法。由于具有附加的对流扩散方程及其相关边界相互作用,热设计比机械或空气动力学设计更为复杂。我们使用合作的多代理深钢筋学习以及流体和固体结构域的连续几何表示,提出了生成的热设计。该提出的框架由预先训练的神经网络替代模型组成,作为预测产生几何形状的传热和压降的环境。设计空间通过复合Bezier曲线进行参数化,以求解多个FIN形状优化。我们表明,我们的多代理框架可以使用多目标奖励来学习设计策略的策略,而无需形状推导或可区分的目标函数。
translated by 谷歌翻译
通过Navier-Stokes方程的数值解决方案的计算流体动力学(CFD)仿真是从工程设计到气候建模的广泛应用中的重要工具。然而,CFD代码所需的计算成本和内存需求对于实际兴趣的流动可能变得非常高,例如在空气动力学形状优化中。该费用与流体流动控制方程的复杂性有关,其包括具有困难的解决方案的非线性部分衍生术语,导致长的计算时间和限制在迭代设计过程中可以测试的假设的数量。因此,我们提出了DeepCFD:基于卷积神经网络(CNN)的模型,其有效地近似于均匀稳态流动问题的解决方案。所提出的模型能够直接从使用最先进的CFD代码生成的地面真实数据的速度和压力场的完整解决方案的完整解决方案。使用DeepCFD,与标准CFD方法以低误差率的成本相比,我们发现高达3个数量级的加速。
translated by 谷歌翻译
浅水方程是大多数洪水和河流液压分析模型的基础。这些基于物理的模型通常昂贵且速度慢,因此不适合实时预测或参数反转。有吸引力的替代方案是代理模型。这项工作基于深度学习介绍了高效,准确,灵活的代理模型,NN-P2P,它可以对非结构化或不规则网格进行点对点预测。评估新方法并与基于卷积神经网络(CNNS)的现有方法进行比较,其只能在结构化或常规网格上进行图像到图像预测。在NN-P2P中,输入包括空间坐标和边界特征,可以描述液压结构的几何形状,例如桥墩。所有代理模型都在预测培训域中不同类型的码头周围的流程中。然而,当执行空间推断时,只有NN-P2P工作很好。基于CNN的方法的限制源于其光栅图像性质,其无法捕获边界几何形状和流量,这对流体动力学至关重要。 NN-P2P在通过神经网络预测码头周围的流量方面也具有良好的性能。 NN-P2P模型还严格尊重保护法。通过计算拖动系数$ C_D $的拖动系数$ C_D $ C_D $与码头长度/宽度比的新线性关系来证明拟议的代理模型的应用。
translated by 谷歌翻译
物理世界中的液体的难以解释需要准确地模拟其许多科学和工程应用的动态。传统上,建立得很好但资源密集的CFD溶解器提供了这种模拟。近年来已经看到了深入学习的替代模型,取代了这些求解器来缓解模拟过程。构建数据驱动代理的一些方法模拟了求解器迭代过程。他们推断出前一个液体的下一个状态。其他人直接从时间输入中推断出来。方法在其对空间信息的管理方面也有所不同。图形神经网络(GNN)可以解决CFD仿真中常用的不规则网格的特异性。在本文中,我们展示了我们正在进行的工作来设计一种用于不规则网格的新型直接时间GNN架构。它包括随着样条卷绕卷积连接的尺寸的连续。我们在von k {\'a} rm {\'a} n的vortex街基准测试中测试我们的架构。它实现了小的泛化误差,同时减轻了轨迹的误差累积。
translated by 谷歌翻译
在过去的十年中,基于粉末的添加剂制造业改变了制造业。在激光粉床的融合中,特定部分以迭代方式建造,其中通过融化并融合粉末床的合适区域,在彼此之间形成二维横截面。在此过程中,熔体池及其热场的行为在预测制成部分的质量及其可能的缺陷方面具有非常重要的作用。但是,这种复杂现象的模拟通常非常耗时,需要大量的计算资源。 Flow-3D是能够使用迭代数值求解器执行此类仿真的软件包之一。在这项工作中,我们使用Flow-3D创建了三个单程过程的数据集,并使用它们来训练卷积神经网络,能够仅通过将三个参数作为输入来预测熔体池的三维热场的行为:激光功率,激光速度和时间步长。 CNN在预测熔体池面积的情况下,温度场的相对根平方误差为2%至3%,平均相交的联合分数为80%至90%。此外,由于将时间作为模型的输入之一包括在内,因此可以在任何任意时间步中立即获得热场,而无需迭代并计算所有步骤
translated by 谷歌翻译
Surrogate models are necessary to optimize meaningful quantities in physical dynamics as their recursive numerical resolutions are often prohibitively expensive. It is mainly the case for fluid dynamics and the resolution of Navier-Stokes equations. However, despite the fast-growing field of data-driven models for physical systems, reference datasets representing real-world phenomena are lacking. In this work, we develop AirfRANS, a dataset for studying the two-dimensional incompressible steady-state Reynolds-Averaged Navier-Stokes equations over airfoils at a subsonic regime and for different angles of attacks. We also introduce metrics on the stress forces at the surface of geometries and visualization of boundary layers to assess the capabilities of models to accurately predict the meaningful information of the problem. Finally, we propose deep learning baselines on four machine learning tasks to study AirfRANS under different constraints for generalization considerations: big and scarce data regime, Reynolds number, and angle of attack extrapolation.
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
传统上,基于标度律维模型已被用于参数对流换热岩类地行星像地球,火星,水星和金星的内部,以解决二维或三维高保真前插的计算瓶颈。然而,这些在物理它们可以建模(例如深度取决于材料特性),并预测只平均量的量的限制,例如平均温度地幔。我们最近发现,前馈神经网络(FNN),使用了大量的二维模拟可以克服这个限制和可靠地预测整个1D横向平均温度分布的演变,及时为复杂的模型训练。我们现在扩展该方法以预测的完整2D温度字段,它包含在对流结构如热羽状和冷downwellings的形式的信息。使用的地幔热演化的10,525二维模拟数据集火星般的星球,我们表明,深度学习技术能够产生可靠的参数代理人(即代理人即预测仅基于参数状态变量,如温度)底层偏微分方程。我们首先使用卷积自动编码由142倍以压缩温度场,然后使用FNN和长短期存储器网络(LSTM)来预测所述压缩字段。平均起来,FNN预测是99.30%,并且LSTM预测是准确相对于看不见模拟99.22%。在LSTM和FNN预测显示,尽管较低的绝对平均相对精度,LSTMs捕捉血流动力学优于FNNS适当的正交分解(POD)。当求和,从FNN预测和从LSTM预测量至96.51%,相对97.66%到原始模拟的系数,分别与POD系数。
translated by 谷歌翻译
计算流体动力学(CFD)模拟广泛应用于工程和物理学。流体动力学的标准描述需要在不同的流动方案中求解Navier-Stokes(N-S)方程。然而,CFD仿真的应用是通过高性能计算的可用性,速度和平行性计算的。为了提高计算效率,已用于为CFD创建加速数据驱动近似的机器学习技术。大多数此类方法依赖于大型标记的CFD数据集,其昂贵以在构建强大的数据驱动模型所需的规模上获得。我们使用具有边界和几何条件的多通道输入,在各种边界条件下开发一种弱监控的方法来解决各种边界条件下的稳态N-S方程。我们在没有任何标记的仿真数据的情况下实现最先进的结果,但是使用自定义数据驱动和物理信息的丢失功能,通过使用和小规模的解决方案来赋予模型来解决N-S方程。为了提高分辨率和可预测性,我们培训堆叠模型的增加复杂性为N-S方程产生数值解。没有昂贵的计算,我们的模型以各种障碍和边界条件实现了高可预测性。鉴于其高灵活性,该模型可以在64×64域内在常规桌面计算机上以5毫秒的5毫秒生成解决方案,比常规CFD求解器快1000倍。在本地消费者计算硬件上的交互式CFD仿真翻译在数据传输令人望而越令人望而越来越多,可以提高边值流体问题的尺度,速度和计算成本,可以在实时预测上进行新的应用。
translated by 谷歌翻译
血流特征的预测对于了解血液动脉网络的行为至关重要,特别是在血管疾病(如狭窄)的存在下。计算流体动力学(CFD)提供了一种强大而有效的工具,可以确定包括网络内的压力和速度字段的这些特征。尽管该领域有许多研究,但CFD的极高计算成本导致研究人员开发新的平台,包括机器学习方法,而是以更低的成本提供更快的分析。在这项研究中,我们提出了一个深度神经网络框架,以预测冠状动脉网络中的流动行为,在存在像狭窄等异常存在下具有不同的性质。为此,使用合成数据训练人工神经网络(ANN)模型,使得它可以预测动脉网络内的压力和速度。培训神经网络所需的数据是从ABAQUS软件的特定特征的次数的CFD分析中获得了培训神经网络的数据。狭窄引起的血压下降,这是诊断心脏病诊断中最重要的因素之一,可以使用我们所提出的模型来了解冠状动脉的任何部分的几何和流动边界条件。使用Lad血管的三个实际几何形状来验证模型的效率。所提出的方法精确地预测了血流量的血流动力学行为。压力预测的平均精度为98.7%,平均速度幅度精度为93.2%。根据测试三个患者特定几何形状的模型的结果,模型可以被认为是有限元方法的替代方案以及其他难以实现的耗时数值模拟。
translated by 谷歌翻译
深度学习替代模型已显示出在解决部分微分方程(PDE)方面的希望。其中,傅立叶神经操作员(FNO)达到了良好的准确性,并且与数值求解器(例如流体流量)上的数值求解器相比要快得多。但是,FNO使用快速傅立叶变换(FFT),该变换仅限于具有均匀网格的矩形域。在这项工作中,我们提出了一个新框架,即Geo-Fno,以解决任意几何形状的PDE。 Geo-FNO学会将可能不规则的输入(物理)结构域变形为具有均匀网格的潜在空间。具有FFT的FNO模型应用于潜在空间。所得的GEO-FNO模型既具有FFT的计算效率,也具有处理任意几何形状的灵活性。我们的Geo-FNO在其输入格式,,即点云,网格和设计参数方面也很灵活。我们考虑了各种PDE,例如弹性,可塑性,Euler和Navier-Stokes方程,以及正向建模和逆设计问题。与标准数值求解器相比,与标准数值求解器相比,Geo-fno的价格比标准数值求解器快两倍,与在现有基于ML的PDE求解器(如标准FNO)上进行直接插值相比,Geo-fno更准确。
translated by 谷歌翻译
自从Navier Stokes方程的推导以来,已经有可能在数值上解决现实世界的粘性流问题(计算流体动力学(CFD))。然而,尽管中央处理单元(CPU)的性能取得了迅速的进步,但模拟瞬态流量的计算成本非常小,时间/网格量表物理学仍然是不现实的。近年来,机器学习(ML)技术在整个行业中都受到了极大的关注,这一大浪潮已经传播了流体动力学界的各种兴趣。最近的ML CFD研究表明,随着数据驱动方法的训练时间和预测时间之间的间隔增加,完全抑制了误差的增加是不现实的。应用ML的实用CFD加速方法的开发是剩余的问题。因此,这项研究的目标是根据物理信息传递学习制定现实的ML策略,并使用不稳定的CFD数据集验证了该策略的准确性和加速性能。该策略可以在监视跨耦合计算框架中管理方程的残差时确定转移学习的时间。因此,我们的假设是可行的,即连续流体流动时间序列的预测是可行的,因为中间CFD模拟定期不仅减少了增加残差,还可以更新网络参数。值得注意的是,具有基于网格的网络模型的交叉耦合策略不会损害计算加速度的仿真精度。在层流逆流CFD数据集条件下,该模拟加速了1.8次,包括参数更新时间。此可行性研究使用了开源CFD软件OpenFOAM和开源ML软件TensorFlow。
translated by 谷歌翻译
了解添加剂制造(AM)过程的热行为对于增强质量控制和实现定制过程设计至关重要。大多数纯粹基于物理的计算模型都有密集的计算成本,因此不适合在线控制和迭代设计应用程序。数据驱动的模型利用最新开发的计算工具可以作为更有效的替代品,但通常会在大量仿真数据上进行培训,并且通常无法有效使用小但高质量的实验数据。在这项工作中,我们使用物理知识的神经网络开发了AM过程的基于混合物理学的热建模方法。具体而言,通过红外摄像机测量的部分观察到的温度数据与物理定律结合在一起,以预测全场温度病史并发现未知的材料和过程参数。在数值和实验示例中,添加辅助训练数据并使用转移学习技术在训练效率和预测准确性方面的有效性,以及具有部分观察到的数据的未知参数的能力。结果表明,混合热模型可以有效地识别未知参数并准确捕获全田温度,因此它具有在AM的迭代过程设计和实时过程控制中的潜力。
translated by 谷歌翻译
Wind turbine wake modelling is of crucial importance to accurate resource assessment, to layout optimisation, and to the operational control of wind farms. This work proposes a surrogate model for the representation of wind turbine wakes based on a state-of-the-art graph representation learning method termed a graph neural network. The proposed end-to-end deep learning model operates directly on unstructured meshes and has been validated against high-fidelity data, demonstrating its ability to rapidly make accurate 3D flow field predictions for various inlet conditions and turbine yaw angles. The specific graph neural network model employed here is shown to generalise well to unseen data and is less sensitive to over-smoothing compared to common graph neural networks. A case study based upon a real world wind farm further demonstrates the capability of the proposed approach to predict farm scale power generation. Moreover, the proposed graph neural network framework is flexible and highly generic and as formulated here can be applied to any steady state computational fluid dynamics simulations on unstructured meshes.
translated by 谷歌翻译
物理信息神经网络(PINN)能够找到给定边界值问题的解决方案。我们使用有限元方法(FEM)的几个想法来增强工程问题中现有的PINN的性能。当前工作的主要贡献是促进使用主要变量的空间梯度作为分离神经网络的输出。后来,具有较高衍生物的强形式应用于主要变量的空间梯度作为物理约束。此外,该问题的所谓能量形式被应用于主要变量,作为训练的附加约束。所提出的方法仅需要一阶导数来构建物理损失函数。我们讨论了为什么通过不同模型之间的各种比较,这一点是有益的。基于配方混合的PINN和FE方法具有一些相似之处。前者利用神经网络的复杂非线性插值将PDE及其能量形式最小化及其能量形式,而后者则在元素节点借助Shape函数在元素节点上使用相同。我们专注于异质固体,以显示深学习在不同边界条件下在复杂环境中预测解决方案的能力。针对FEM的解决方案对两个原型问题的解决方案进行了检查:弹性和泊松方程(稳态扩散问题)。我们得出的结论是,通过正确设计PINN中的网络体系结构,深度学习模型有可能在没有其他来源的任何可用初始数据中解决异质域中的未知数。最后,关于Pinn和FEM的组合进行了讨论,以在未来的开发中快速准确地设计复合材料。
translated by 谷歌翻译
物理知识的神经网络(PINNS)由于能力将物理定律纳入模型,在工程的各个领域都引起了很多关注。但是,对机械和热场之间涉及耦合的工业应用中PINN的评估仍然是一个活跃的研究主题。在这项工作中,我们提出了PINNS在非牛顿流体热机械问题上的应用,该问题通常在橡胶日历过程中考虑。我们证明了PINN在处理逆问题和不良问题时的有效性,这些问题是不切实际的,可以通过经典的数值离散方法解决。我们研究了传感器放置的影响以及无监督点对PINNS性能的分布,即从某些部分数据中推断出隐藏的物理领域的问题。我们还研究了PINN从传感器捕获的测量值中识别未知物理参数的能力。在整个工作中,还考虑了嘈杂测量的效果。本文的结果表明,在识别问题中,PINN可以仅使用传感器上的测量结果成功估算未知参数。在未完全定义边界条件的不足问题中,即使传感器的放置和无监督点的分布对PINNS性能产生了很大的影响,我们表明该算法能够从局部测量中推断出隐藏的物理。
translated by 谷歌翻译
Deep learning surrogate models are being increasingly used in accelerating scientific simulations as a replacement for costly conventional numerical techniques. However, their use remains a significant challenge when dealing with real-world complex examples. In this work, we demonstrate three types of neural network architectures for efficient learning of highly non-linear deformations of solid bodies. The first two architectures are based on the recently proposed CNN U-NET and MAgNET (graph U-NET) frameworks which have shown promising performance for learning on mesh-based data. The third architecture is Perceiver IO, a very recent architecture that belongs to the family of attention-based neural networks--a class that has revolutionised diverse engineering fields and is still unexplored in computational mechanics. We study and compare the performance of all three networks on two benchmark examples, and show their capabilities to accurately predict the non-linear mechanical responses of soft bodies.
translated by 谷歌翻译
当系统中有某些未知术语和隐藏的物理机制时,基于第一原理的复杂物理系统的管理方程可能会非常具有挑战性。在这项工作中,我们采用深度学习体系结构来学习基于从完全动力学模型中获取的数据的等离子体系统的流体部分微分方程(PDE)。证明了学到的多臂流体PDE可以融合诸如Landau阻尼等动力学效应。基于学习的流体闭合,数据驱动的多音阶流体建模可以很好地再现从完全动力学模型中得出的所有物理量。Landau阻尼的计算阻尼率与完全动力学的模拟和线性理论一致。用于复杂物理系统的PDE的数据驱动的流体建模可以应用于改善流体闭合并降低全球系统多规模建模的计算成本。
translated by 谷歌翻译
在许多应用中,耗散较低但高接触面积的流体流动设备很重要。设计此类设备的众所周知的策略是多尺度拓扑优化(MTO),其中在每个离散域的每个单元格中设计了最佳的微观结构。不幸的是,MTO在计算上非常昂贵,因为在同质化过程的每个步骤中,必须对不断发展的微观结构进行均质化。作为替代方案,我们在这里提出了用于设计流体流量设备的分级多尺寸拓扑优化(GMTO)。在提出的方法中,使用了几种预选但大小的参数化和定向的微观结构来最佳填充域。 GMTO显着降低了计算,同时保留了MTO的许多好处。特别是,此处使用神经网络(NN)实施GMTO,因为:(1)可以离线执行均质化,并在优化过程中由NN使用,(2)它可以在优化过程中在微结构之间进行连续切换(3(3)(3)(3 )设计变量和计算工作的数量独立于所使用的微结构数量,(4)它支持自动分化,从而消除了手动灵敏度分析。提出了几个数值结果,以说明所提出的框架。
translated by 谷歌翻译