通过Navier-Stokes方程的数值解决方案的计算流体动力学(CFD)仿真是从工程设计到气候建模的广泛应用中的重要工具。然而,CFD代码所需的计算成本和内存需求对于实际兴趣的流动可能变得非常高,例如在空气动力学形状优化中。该费用与流体流动控制方程的复杂性有关,其包括具有困难的解决方案的非线性部分衍生术语,导致长的计算时间和限制在迭代设计过程中可以测试的假设的数量。因此,我们提出了DeepCFD:基于卷积神经网络(CNN)的模型,其有效地近似于均匀稳态流动问题的解决方案。所提出的模型能够直接从使用最先进的CFD代码生成的地面真实数据的速度和压力场的完整解决方案的完整解决方案。使用DeepCFD,与标准CFD方法以低误差率的成本相比,我们发现高达3个数量级的加速。
translated by 谷歌翻译
数据驱动的湍流建模正在经历数据科学算法和硬件开发后的兴趣激增。我们讨论了一种使用可区分物理范式的方法,该方法将已知的物理学与机器学习结合起来,以开发汉堡湍流的闭合模型。我们将1D汉堡系统视为一种原型测试问题,用于建模以对流为主的湍流问题中未解决的术语。我们训练一系列模型,这些模型在后验损失函数上结合了不同程度的物理假设,以测试模型在一系列系统参数(包括粘度,时间和网格分辨率)上的疗效。我们发现,以部分微分方程形式的归纳偏差的约束模型包含已知物理或现有闭合方法会产生高度数据效率,准确和可推广的模型,并且表现优于最先进的基准。以物理信息形式添加结构还为模型带来了一定程度的解释性,可能为封闭建模的未来提供了垫脚石。
translated by 谷歌翻译
在本文中,我们根据卷积神经网络训练湍流模型。这些学到的湍流模型改善了在模拟时为不可压缩的Navier-Stokes方程的溶解不足的低分辨率解。我们的研究涉及开发可区分的数值求解器,该求解器通过多个求解器步骤支持优化梯度的传播。这些属性的重要性是通过那些模型的出色稳定性和准确性来证明的,这些模型在训练过程中展开了更多求解器步骤。此外,我们基于湍流物理学引入损失项,以进一步提高模型的准确性。这种方法应用于三个二维的湍流场景,一种均匀的腐烂湍流案例,一个暂时进化的混合层和空间不断发展的混合层。与无模型模拟相比,我们的模型在长期A-posterii统计数据方面取得了重大改进,而无需将这些统计数据直接包含在学习目标中。在推论时,我们提出的方法还获得了相似准确的纯粹数值方法的实质性改进。
translated by 谷歌翻译
计算流体动力学(CFD)模拟广泛应用于工程和物理学。流体动力学的标准描述需要在不同的流动方案中求解Navier-Stokes(N-S)方程。然而,CFD仿真的应用是通过高性能计算的可用性,速度和平行性计算的。为了提高计算效率,已用于为CFD创建加速数据驱动近似的机器学习技术。大多数此类方法依赖于大型标记的CFD数据集,其昂贵以在构建强大的数据驱动模型所需的规模上获得。我们使用具有边界和几何条件的多通道输入,在各种边界条件下开发一种弱监控的方法来解决各种边界条件下的稳态N-S方程。我们在没有任何标记的仿真数据的情况下实现最先进的结果,但是使用自定义数据驱动和物理信息的丢失功能,通过使用和小规模的解决方案来赋予模型来解决N-S方程。为了提高分辨率和可预测性,我们培训堆叠模型的增加复杂性为N-S方程产生数值解。没有昂贵的计算,我们的模型以各种障碍和边界条件实现了高可预测性。鉴于其高灵活性,该模型可以在64×64域内在常规桌面计算机上以5毫秒的5毫秒生成解决方案,比常规CFD求解器快1000倍。在本地消费者计算硬件上的交互式CFD仿真翻译在数据传输令人望而越令人望而越来越多,可以提高边值流体问题的尺度,速度和计算成本,可以在实时预测上进行新的应用。
translated by 谷歌翻译
使用计算流体动力学(CFD)方法近似风流可能是耗时的。创建用于在观察风流量变化的同时以交互式设计原型的工具需要更简单的模型来模拟更快。代替运行数值近似导致的详细计算,深度学习中的数据驱动方法可能能够在一小部分中提供类似的结果。这项工作将使用CFD计算到计算3D流场的问题,以在建筑占地面积上使用CFD到基于2D图像到图像转换的问题,以预测行人高度水平的流场。我们调查使用生成的对冲网络(GAN),例如PIX2PIX [1]和CYCREGAN [2]代表各种域中的图像到图像转换任务以及U-Net AutoEncoder [ 3]。模型可以以数据驱动的方式学习数据集的基础分布,我们认为可以帮助模型从CFD中了解底层雷诺平均的Navier-Stokes(RANS)方程。我们在具有且没有高度信息的各种三维诈唬型建筑物上进行新型模拟数据集。此外,我们为生成的图像提供了广泛的定性和定量评估,以选择模型,并将其性能与CFD传递的模拟进行比较。然后,我们通过提出用于在不同架构上注入这种信息的一般框架,将位置数据添加到输入可以产生更准确的结果。此外,我们表明模型通过应用注意机制和光谱归一化来改善,以便于稳定训练。
translated by 谷歌翻译
机器学习正迅速成为科学计算的核心技术,并有许多机会推进计算流体动力学领域。从这个角度来看,我们强调了一些潜在影响最高的领域,包括加速直接数值模拟,以改善湍流闭合建模,并开发增强的减少订单模型。我们还讨论了机器学习的新兴领域,这对于计算流体动力学以及应考虑的一些潜在局限性是有希望的。
translated by 谷歌翻译
Surrogate models are necessary to optimize meaningful quantities in physical dynamics as their recursive numerical resolutions are often prohibitively expensive. It is mainly the case for fluid dynamics and the resolution of Navier-Stokes equations. However, despite the fast-growing field of data-driven models for physical systems, reference datasets representing real-world phenomena are lacking. In this work, we develop AirfRANS, a dataset for studying the two-dimensional incompressible steady-state Reynolds-Averaged Navier-Stokes equations over airfoils at a subsonic regime and for different angles of attacks. We also introduce metrics on the stress forces at the surface of geometries and visualization of boundary layers to assess the capabilities of models to accurately predict the meaningful information of the problem. Finally, we propose deep learning baselines on four machine learning tasks to study AirfRANS under different constraints for generalization considerations: big and scarce data regime, Reynolds number, and angle of attack extrapolation.
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
泊松方程至关重要,以获得用于霍尔效应推进器和炉射线放电的等离子体流体模拟中的自我一致的解决方案,因为泊松解决方案看起来是不稳定的非线性流动方程的源期。作为第一步,使用多尺度架构研究了使用深神经网络的零小小的边界条件的求解2D泊松方程,以分支机构,深度和接收领域的数量定义。一个关键目标是更好地了解神经网络如何学习泊松解决方案,并提供指导方针来实现最佳网络配置,特别是当耦合到具有等离子体源术语的时变欧拉方程时。这里,发现接收领域对于正确捕获场的大拓扑结构至关重要。对多种架构,损失和封锁的调查提供了最佳的网络来准确解决稳定的泊松问题。然后在具有越来越多的节点的网格上监测称为Plasmanet的最佳神经网络求解器的性能,并与经典平行的线性溶剂进行比较。接下来,在电子等离子体振荡测试盒的上下文中,Plasmanet与不稳定的欧拉等离子体流体方程求解器联接。在这一时间不断发展的问题中,需要物理损失来产生稳定的模拟。最终测试了涉及化学和平流的更复杂的放电繁殖案例。应用了先前部分中建立的指导方针,以构建CNN,以解决具有不同边界条件的圆柱形坐标中的相同泊松方程。结果揭示了良好的CNN预测,并利用现代GPU的硬件铺平了新的计算策略,以预测涉及泊松方程的不稳定问题。
translated by 谷歌翻译
浅水方程是大多数洪水和河流液压分析模型的基础。这些基于物理的模型通常昂贵且速度慢,因此不适合实时预测或参数反转。有吸引力的替代方案是代理模型。这项工作基于深度学习介绍了高效,准确,灵活的代理模型,NN-P2P,它可以对非结构化或不规则网格进行点对点预测。评估新方法并与基于卷积神经网络(CNNS)的现有方法进行比较,其只能在结构化或常规网格上进行图像到图像预测。在NN-P2P中,输入包括空间坐标和边界特征,可以描述液压结构的几何形状,例如桥墩。所有代理模型都在预测培训域中不同类型的码头周围的流程中。然而,当执行空间推断时,只有NN-P2P工作很好。基于CNN的方法的限制源于其光栅图像性质,其无法捕获边界几何形状和流量,这对流体动力学至关重要。 NN-P2P在通过神经网络预测码头周围的流量方面也具有良好的性能。 NN-P2P模型还严格尊重保护法。通过计算拖动系数$ C_D $的拖动系数$ C_D $ C_D $与码头长度/宽度比的新线性关系来证明拟议的代理模型的应用。
translated by 谷歌翻译
我们使用高斯随机重量平均(赃物)来评估与基于神经网络的功能近似相关的模型不确定性与流体流有关。赃物在给定训练数据和恒定学习率的情况下近似每个重量的后高斯分布。有了访问此分布,它能够创建具有各种采样权重组合的多个模型,可用于获得集合预测。这种合奏的平均值可以视为“平均估计”,而其标准偏差则可以用于构建“置信区间”,这使我们能够在神经网络的训练过程中执行不确定性定量(UQ)。我们在以下情况下利用代表性的基于神经网络的功能近似任务:(i)二维圆形缸唤醒; (ii)Daymet数据集(北美的最高每日温度); (iii)三维方缸唤醒; (iv)城市流程,以评估当前思想在各种复杂数据集中的普遍性。无论网络体系结构如何,都可以应用基于赃物的UQ,因此,我们证明了该方法对两种类型的神经网络的适用性:(i)通过结合卷积神经网络(CNN)和Multi-i-Encompruction。图层感知器(MLP); (ii)来自具有二维CNN的截面数据的远场状态估计。我们发现,赃物可以从模型形式不确定性的角度获得物理上介入的置信区间估计。该能力支持其用于科学和工程方面的各种问题。
translated by 谷歌翻译
本构模型广泛用于在科学与工程中建模复杂系统,其中基于第一原则,解决良好的模拟通常是非常昂贵的。例如,在流体动力学中,需要构成型型号来描述非局部,未解决的物理学,例如湍流和层状湍流转变。然而,基于部分微分方程(PDE)的传统本构模型通常缺乏稳健性,并且太硬而无法容纳不同的校准数据集。我们提出了一种基于可以使用数据学习的矢量云神经网络的帧无关的非局部构成模型。该模型在基于其邻域中的流量信息的点处预测闭合变量。这种非本种信息由一组点表示,每个点具有附加到它的特征向量,因此输入被称为矢量云。云通过帧无关的神经网络映射到封闭变量,不变于协调转换和旋转以及云中点的排序。这样,网络可以处理任何数量的任意排列的网格点,因此适用于流体模拟中的非结构化网格。所提出的网络的优点是在参数化的周期山几何形状上的标量传输PDE上进行了说明。矢量云神经网络是一个有前途的工具,不仅是非本体构成型模型,而且还是作为不规则结构域的PDE的一般代理模型。
translated by 谷歌翻译
数值模拟中信息丢失可能来自各种来源,同时求解离散的部分微分方程。特别地,与等效的64位模拟相比,使用低精确的16位浮点算术进行模拟时,与精度相关的错误可能会积累在关注量中。在这里,低精度计算所需的资源要比高精度计算要低得多。最近提出的几种机器学习(ML)技术已成功纠正空间离散化引起的错误。在这项工作中,我们扩展了这些技术,以改善使用低数值精度进行的计算流体动力学(CFD)模拟。我们首先量化了在Kolmogorov强制湍流测试案例中累积的精度相关误差。随后,我们采用了卷积神经网络以及执行16位算术的完全可区分的数值求解器,以学习紧密耦合的ML-CFD混合求解器。与16位求解器相比,我们证明了ML-CFD混合求解器在减少速度场中的误差积累并在较高频率下改善动能光谱的功效。
translated by 谷歌翻译
我们提出了使用复合曲线曲线产生的复杂鳍几何形状的传​​热和压降预测的替代模型。热设计过程包括复杂,计算昂贵且耗时的迭代高保真模拟。随着机器学习算法以及图形处理单元(GPU)的进步,我们可以利用GPU的并行处理体系结构,而不仅仅是仅依靠CPU来加速热流体模拟。在这项研究中,卷积神经网络(CNN)用于直接从保存为图像的拓扑中预测计算流体动力学(CFD)的结果。研究了带有单个鳍和多个形态鳍的表壳。为案例提供了单个FIN设计的Xpection网络和常规CNN的比较。结果表明,对于单鳍设计,尤其是使用Xception网络,观察到高精度的预测精度。增加设计自由到多个鳍片会增加预测的误差。然而,对于设计目的而言,这一错误仍在压降和传热估计中保持在3%之内。
translated by 谷歌翻译
具有经典数字求解器的湍流模拟需要非常高分辨率的网格来准确地解决动态。在这里,我们以低空间和时间分辨率培训学习模拟器,以捕获高分辨率产生的湍流动态。我们表明我们所提出的模型可以比各种科学相关指标的相同低分辨率的经典数字求解器更准确地模拟湍流动态。我们的模型从数据训练结束到底,能够以低分辨率学习一系列挑战性的混乱和动态动态,包括最先进的雅典娜++发动机产生的轨迹。我们表明,我们的更简单,通用体系结构优于来自所学到的湍流模拟文献的各种专业的湍流特异性架构。一般来说,我们看到学习的模拟器产生不稳定的轨迹;但是,我们表明调整训练噪音和时间下采样解决了这个问题。我们还发现,虽然超出培训分配的泛化是学习模型,训练噪声,卷积架构以及增加损失约束的挑战。广泛地,我们得出的结论是,我们所知的模拟器优于传统的求解器在较粗糙的网格上运行,并强调简单的设计选择可以提供稳定性和鲁棒的泛化。
translated by 谷歌翻译
相位场建模是一种有效但计算昂贵的方法,用于捕获材料中的中尺度形态和微观结构演化。因此,需要快速且可推广的替代模型来减轻计算征税流程的成本,例如在材料的优化和设计中。尖锐相边界的存在所产生的物理现象的固有不连续性使替代模型的训练繁琐。我们开发了一个框架,该框架将卷积自动编码器架构与深神经操作员(DeepOnet)集成在一起,以了解两相混合物的动态演化,并加速预测微结构演变的时间。我们利用卷积自动编码器在低维的潜在空间中提供微观结构数据的紧凑表示。 DeepOnet由两个子网络组成,一个用于编码固定数量的传感器位置(分支网)的输入函数,另一个用于编码输出功能的位置(TRUNK NET),了解微观结构Evolution的中尺度动力学从自动编码器潜在空间。然后,卷积自动编码器的解码器部分从deponet预测中重建了时间进化的微结构。然后,可以使用训练有素的DeepOnet架构来替换插值任务中的高保真相位数值求解器或在外推任务中加速数值求解器。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
高维时空动力学通常可以在低维子空间中编码。用于建模,表征,设计和控制此类大规模系统的工程应用通常依赖于降低尺寸,以实时计算解决方案。降低维度的常见范例包括线性方法,例如奇异值分解(SVD)和非线性方法,例如卷积自动编码器(CAE)的变体。但是,这些编码技术缺乏有效地表示与时空数据相关的复杂性的能力,后者通常需要可变的几何形状,非均匀的网格分辨率,自适应网格化和/或参数依赖性。为了解决这些实用的工程挑战,我们提出了一个称为神经隐式流(NIF)的一般框架,该框架可以实现大型,参数,时空数据的网格不稳定,低级别表示。 NIF由两个修改的多层感知器(MLP)组成:(i)shapenet,它分离并代表空间复杂性,以及(ii)参数,该参数解释了任何其他输入复杂性,包括参数依赖关系,时间和传感器测量值。我们演示了NIF用于参数替代建模的实用性,从而实现了复杂时空动力学的可解释表示和压缩,有效的多空间质量任务以及改善了稀疏重建的通用性能。
translated by 谷歌翻译
自从Navier Stokes方程的推导以来,已经有可能在数值上解决现实世界的粘性流问题(计算流体动力学(CFD))。然而,尽管中央处理单元(CPU)的性能取得了迅速的进步,但模拟瞬态流量的计算成本非常小,时间/网格量表物理学仍然是不现实的。近年来,机器学习(ML)技术在整个行业中都受到了极大的关注,这一大浪潮已经传播了流体动力学界的各种兴趣。最近的ML CFD研究表明,随着数据驱动方法的训练时间和预测时间之间的间隔增加,完全抑制了误差的增加是不现实的。应用ML的实用CFD加速方法的开发是剩余的问题。因此,这项研究的目标是根据物理信息传递学习制定现实的ML策略,并使用不稳定的CFD数据集验证了该策略的准确性和加速性能。该策略可以在监视跨耦合计算框架中管理方程的残差时确定转移学习的时间。因此,我们的假设是可行的,即连续流体流动时间序列的预测是可行的,因为中间CFD模拟定期不仅减少了增加残差,还可以更新网络参数。值得注意的是,具有基于网格的网络模型的交叉耦合策略不会损害计算加速度的仿真精度。在层流逆流CFD数据集条件下,该模拟加速了1.8次,包括参数更新时间。此可行性研究使用了开源CFD软件OpenFOAM和开源ML软件TensorFlow。
translated by 谷歌翻译
Efficient simulation of the Navier-Stokes equations for fluid flow is a long standing problem in applied mathematics, for which state-of-the-art methods require large compute resources. In this work, we propose a data-driven approach that leverages the approximation power of deep-learning with the precision of standard solvers to obtain fast and highly realistic simulations. Our method solves the incompressible Euler equations using the standard operator splitting method, in which a large sparse linear system with many free parameters must be solved. We use a Convolutional Network with a highly tailored architecture, trained using a novel unsupervised learning framework to solve the linear system. We present real-time 2D and 3D simulations that outperform recently proposed data-driven methods; the obtained results are realistic and show good generalization properties.
translated by 谷歌翻译