使用计算流体动力学(CFD)方法近似风流可能是耗时的。创建用于在观察风流量变化的同时以交互式设计原型的工具需要更简单的模型来模拟更快。代替运行数值近似导致的详细计算,深度学习中的数据驱动方法可能能够在一小部分中提供类似的结果。这项工作将使用CFD计算到计算3D流场的问题,以在建筑占地面积上使用CFD到基于2D图像到图像转换的问题,以预测行人高度水平的流场。我们调查使用生成的对冲网络(GAN),例如PIX2PIX [1]和CYCREGAN [2]代表各种域中的图像到图像转换任务以及U-Net AutoEncoder [ 3]。模型可以以数据驱动的方式学习数据集的基础分布,我们认为可以帮助模型从CFD中了解底层雷诺平均的Navier-Stokes(RANS)方程。我们在具有且没有高度信息的各种三维诈唬型建筑物上进行新型模拟数据集。此外,我们为生成的图像提供了广泛的定性和定量评估,以选择模型,并将其性能与CFD传递的模拟进行比较。然后,我们通过提出用于在不同架构上注入这种信息的一般框架,将位置数据添加到输入可以产生更准确的结果。此外,我们表明模型通过应用注意机制和光谱归一化来改善,以便于稳定训练。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
与CNN的分类,分割或对象检测相比,生成网络的目标和方法根本不同。最初,它们不是作为图像分析工具,而是生成自然看起来的图像。已经提出了对抗性训练范式来稳定生成方法,并已被证明是非常成功的 - 尽管绝不是第一次尝试。本章对生成对抗网络(GAN)的动机进行了基本介绍,并通​​过抽象基本任务和工作机制并得出了早期实用方法的困难来追溯其成功的道路。将显示进行更稳定的训练方法,也将显示出不良收敛及其原因的典型迹象。尽管本章侧重于用于图像生成和图像分析的gan,但对抗性训练范式本身并非特定于图像,并且在图像分析中也概括了任务。在将GAN与最近进入场景的进一步生成建模方法进行对比之前,将闻名图像语义分割和异常检测的架构示例。这将允许对限制的上下文化观点,但也可以对gans有好处。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
现代光学卫星传感器使高分辨率立体声重建。但是在观察地球从空间推动立体声匹配时挑战成像条件。在实践中,由此产生的数字表面模型(DSM)相当嘈杂,并且通常不会达到3D城市建模等高分辨率应用所需的准确性。可以说,基于低电平图像相似性的立体声对应不足,并且应该互补关于超出基本局部平滑度的预期表面几何的先验知识。为此,我们介绍了Resptepth,这是一个卷积神经网络,其在示例数据之前学习如此表达几何。 Restepth在调节图像上的细化时改进初始原始的立体声DSM。即,它充当了一个智能,学习的后处理过滤器,可以无缝地补充任何立体声匹配管道。在一系列实验中,我们发现所提出的方法始终如一地改善了定量和定性的立体声DSM。我们表明,网络权重中的先前编码捕获了城市设计的有意义的几何特征,这也概括了不同地区,甚至从一个城市到另一个城市。此外,我们证明,通过对各种立体对的训练,RESPTH可以在成像条件和采集几何体中获得足够的不变性。
translated by 谷歌翻译
尽管近期基于深度学习的语义细分,但远程感测图像的自动建筑检测仍然是一个具有挑战性的问题,由于全球建筑物的出现巨大变化。误差主要发生在构建足迹的边界,阴影区域,以及检测外表面具有与周围区域非常相似的反射率特性的建筑物。为了克服这些问题,我们提出了一种生成的对抗基于网络的基于网络的分割框架,其具有嵌入在发电机中的不确定性关注单元和改进模块。由边缘和反向关注单元组成的细化模块,旨在精炼预测的建筑地图。边缘注意力增强了边界特征,以估计更高的精度,并且反向关注允许网络探索先前估计区域中缺少的功能。不确定性关注单元有助于网络解决分类中的不确定性。作为我们方法的权力的衡量标准,截至2021年12月4日,它在Deepglobe公共领导板上的第二名,尽管我们的方法的主要重点 - 建筑边缘 - 并不完全对齐用于排行榜排名的指标。 DeepGlobe充满挑战数据集的整体F1分数为0.745。我们还报告了对挑战的Inria验证数据集的最佳成绩,我们的网络实现了81.28%的总体验证,总体准确性为97.03%。沿着同一条线,对于官方Inria测试数据集,我们的网络总体上得分77.86%和96.41%,而且准确性。
translated by 谷歌翻译
通过Navier-Stokes方程的数值解决方案的计算流体动力学(CFD)仿真是从工程设计到气候建模的广泛应用中的重要工具。然而,CFD代码所需的计算成本和内存需求对于实际兴趣的流动可能变得非常高,例如在空气动力学形状优化中。该费用与流体流动控制方程的复杂性有关,其包括具有困难的解决方案的非线性部分衍生术语,导致长的计算时间和限制在迭代设计过程中可以测试的假设的数量。因此,我们提出了DeepCFD:基于卷积神经网络(CNN)的模型,其有效地近似于均匀稳态流动问题的解决方案。所提出的模型能够直接从使用最先进的CFD代码生成的地面真实数据的速度和压力场的完整解决方案的完整解决方案。使用DeepCFD,与标准CFD方法以低误差率的成本相比,我们发现高达3个数量级的加速。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
尽管有持续的改进,但降水预测仍然没有其他气象变量的准确和可靠。造成这种情况的一个主要因素是,几个影响降水分布和强度的关键过程出现在全球天气模型的解决规模以下。计算机视觉社区已经证明了生成的对抗网络(GAN)在超分辨率问题上取得了成功,即学习为粗图像添加精细的结构。 Leinonen等。 (2020年)先前使用GAN来产生重建的高分辨率大气场的集合,并给定较粗糙的输入数据。在本文中,我们证明了这种方法可以扩展到更具挑战性的问题,即通过使用高分辨率雷达测量值作为“地面真相”来提高天气预报模型中相对低分辨率输入的准确性和分辨率。神经网络必须学会添加分辨率和结构,同时考虑不可忽略的预测错误。我们表明,甘斯和vae-gan可以在创建高分辨率的空间相干降水图的同时,可以匹配最新的后处理方法的统计特性。我们的模型比较比较与像素和合并的CRP分数,功率谱信息和等级直方图(用于评估校准)的最佳现有缩减方法。我们测试了我们的模型,并表明它们在各种场景中的表现,包括大雨。
translated by 谷歌翻译
随着深度学习(DL)的出现,超分辨率(SR)也已成为一个蓬勃发展的研究领域。然而,尽管结果有希望,但该领域仍然面临需要进一步研究的挑战,例如,允许灵活地采样,更有效的损失功能和更好的评估指标。我们根据最近的进步来回顾SR的域,并检查最新模型,例如扩散(DDPM)和基于变压器的SR模型。我们对SR中使用的当代策略进行了批判性讨论,并确定了有前途但未开发的研究方向。我们通过纳入该领域的最新发展,例如不确定性驱动的损失,小波网络,神经体系结构搜索,新颖的归一化方法和最新评估技术来补充先前的调查。我们还为整章中的模型和方法提供了几种可视化,以促进对该领域趋势的全球理解。最终,这篇综述旨在帮助研究人员推动DL应用于SR的界限。
translated by 谷歌翻译
生成的对抗网络由于研究人员的最新性能在生成新图像时仅使用目标分布的数据集,因此引起了研究人员的关注。已经表明,真实图像的频谱和假图像之间存在差异。由于傅立叶变换是一种徒图映射,因此说该模型在学习原始分布方面有一个重大问题是一个公平的结论。在这项工作中,我们研究了当前gan的架构和数学理论中提到的缺点的可能原因。然后,我们提出了一个新模型,以减少实际图像和假图像频谱之间的差异。为此,我们使用几何深度学习的蓝图为频域设计了一个全新的架构。然后,我们通过将原始数据的傅立叶域表示作为训练过程中的主要特征来表明生成图像的质量的有希望的改善。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
Labels to Facade BW to Color Aerial to Map Labels to Street Scene Edges to Photo input output input input input input output output output output input output Day to Night Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels. Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show results of the method on several. In each case we use the same architecture and objective, and simply train on different data.
translated by 谷歌翻译
由于技术成本的降低和卫星发射的增加,卫星图像变得越来越流行和更容易获得。除了提供仁慈的目的外,还可以出于恶意原因(例如错误信息)使用卫星数据。事实上,可以依靠一般图像编辑工具来轻松操纵卫星图像。此外,随着深层神经网络(DNN)的激增,可以生成属于各种领域的现实合成图像,与合成生成的卫星图像的扩散有关的其他威胁正在出现。在本文中,我们回顾了关于卫星图像的产生和操纵的最新技术(SOTA)。特别是,我们既关注从头开始的合成卫星图像的产生,又要通过图像转移技术对卫星图像进行语义操纵,包括从一种类型的传感器到另一种传感器获得的图像的转换。我们还描述了迄今已研究的法医检测技术,以对合成图像伪造进行分类和检测。虽然我们主要集中在法医技术上明确定制的,该技术是针对AI生成的合成内容物的检测,但我们还审查了一些用于一般剪接检测的方法,这些方法原则上也可以用于发现AI操纵图像
translated by 谷歌翻译
在各种机器学习应用中,表示学习已被证明是一种强大的方法。然而,对于大气动力学,迄今为止尚未考虑它,这可以说是由于缺乏可用于培训的大型,标记的数据集。在这项工作中,我们表明困难是良性的,并引入了一项自我监督的学习任务,该任务定义了各种未标记的大气数据集的绝对损失。具体而言,我们在简单而复杂的任务上训练神经网络,即预测与不同但附近的大气场之间的时间距离。我们证明,对ERA5重新分析进行此任务的培训会导致内部表示,从而捕获了大气动态的内在方面。我们通过为大气状态引入数据驱动的距离度量来做到这一点。当在其他机器学习应用程序中用作损失功能时,与经典$ \ ell_2 $ -loss相比,该ATMODIST距离会改善结果。例如,对于缩小缩放,一个人获得了更高的分辨率字段,该字段比以前的方法更接近真正的统计信息,而对于缺失或遮挡数据的插值,ATMODIST距离导致的结果导致包含更真实的精细规模特征的结果。由于它来自观察数据,因此Atmodist还提供了关于大气可预测性的新观点。
translated by 谷歌翻译
Our goal with this survey is to provide an overview of the state of the art deep learning technologies for face generation and editing. We will cover popular latest architectures and discuss key ideas that make them work, such as inversion, latent representation, loss functions, training procedures, editing methods, and cross domain style transfer. We particularly focus on GAN-based architectures that have culminated in the StyleGAN approaches, which allow generation of high-quality face images and offer rich interfaces for controllable semantics editing and preserving photo quality. We aim to provide an entry point into the field for readers that have basic knowledge about the field of deep learning and are looking for an accessible introduction and overview.
translated by 谷歌翻译
In recent years, deep learning has infiltrated every field it has touched, reducing the need for specialist knowledge and automating the process of knowledge discovery from data. This review argues that astronomy is no different, and that we are currently in the midst of a deep learning revolution that is transforming the way we do astronomy. We trace the history of astronomical connectionism from the early days of multilayer perceptrons, through the second wave of convolutional and recurrent neural networks, to the current third wave of self-supervised and unsupervised deep learning. We then predict that we will soon enter a fourth wave of astronomical connectionism, in which finetuned versions of an all-encompassing 'foundation' model will replace expertly crafted deep learning models. We argue that such a model can only be brought about through a symbiotic relationship between astronomy and connectionism, whereby astronomy provides high quality multimodal data to train the foundation model, and in turn the foundation model is used to advance astronomical research.
translated by 谷歌翻译
哥内克人Sentinel Imagery的纯粹卷的可用性为使用深度学习的大尺度创造了新的土地利用陆地覆盖(Lulc)映射的机会。虽然在这种大型数据集上培训是一个非琐碎的任务。在这项工作中,我们试验Lulc Image分类和基准不同最先进模型的Bigearthnet数据集,包括卷积神经网络,多层感知,视觉变压器,高效导通和宽残余网络(WRN)架构。我们的目标是利用分类准确性,培训时间和推理率。我们提出了一种基于用于网络深度,宽度和输入数据分辨率的WRNS复合缩放的高效导通的框架,以有效地训练和测试不同的模型设置。我们设计一种新颖的缩放WRN架构,增强了有效的通道注意力机制。我们提出的轻量级模型具有较小的培训参数,实现所有19个LULC类的平均F分类准确度达到4.5%,并且验证了我们使用的resnet50最先进的模型速度快两倍作为基线。我们提供超过50种培训的型号,以及我们在多个GPU节点上分布式培训的代码。
translated by 谷歌翻译
我们使用生成的对抗网络(GaN)展示了一种数学上良好的湍流模型的合成建模方法。基于对遍历性的混沌,确定性系统的分析,我们概述了一个数学证据,即GaN实际上可以学习采样状态快照,从而形成混沌系统的不变度量。基于该分析,我们研究了从Lorenz吸引子开始的混沌系统的层次,然后继续与GaN的湍流模拟。作为培训数据,我们使用从大型涡流模拟(LES)获得的速度波动领域。详细研究了两种建筑:我们使用深卷积的GaN(DCGAN)来合成圆柱周围的湍流。我们还使用PIX2PIXHD架构模拟低压涡轮定子围绕的流量,用于条件DCGAN在定子前方的旋转唤醒位置上调节。解释了对抗性培训的设置和使用特定GAN架构的影响。从而表明,GaN在技术上挑战流动问题的基础上的训练日期是有效的模拟湍流。与经典的数值方法,特别是LES相比,GaN训练和推理时间显着下降,同时仍然在高分辨率下提供湍流流动。
translated by 谷歌翻译
浅水方程是大多数洪水和河流液压分析模型的基础。这些基于物理的模型通常昂贵且速度慢,因此不适合实时预测或参数反转。有吸引力的替代方案是代理模型。这项工作基于深度学习介绍了高效,准确,灵活的代理模型,NN-P2P,它可以对非结构化或不规则网格进行点对点预测。评估新方法并与基于卷积神经网络(CNNS)的现有方法进行比较,其只能在结构化或常规网格上进行图像到图像预测。在NN-P2P中,输入包括空间坐标和边界特征,可以描述液压结构的几何形状,例如桥墩。所有代理模型都在预测培训域中不同类型的码头周围的流程中。然而,当执行空间推断时,只有NN-P2P工作很好。基于CNN的方法的限制源于其光栅图像性质,其无法捕获边界几何形状和流量,这对流体动力学至关重要。 NN-P2P在通过神经网络预测码头周围的流量方面也具有良好的性能。 NN-P2P模型还严格尊重保护法。通过计算拖动系数$ C_D $的拖动系数$ C_D $ C_D $与码头长度/宽度比的新线性关系来证明拟议的代理模型的应用。
translated by 谷歌翻译