以下序列出售了许多产品:首先显示焦点产品,如果购买客户,则显示一种或多种辅助产品以供购买。一个突出的例子是出售航空票,首先显示航班,并在选择时出售了许多辅助机构,例如机舱或袋装选项,座位选择,保险等。该公司必须决定销售格式 - 是按串联捆绑或作为捆绑销售的形式出售 - 以及如何分别或捆绑产品为焦点和辅助产品定价。由于仅在购买焦点产品后才考虑辅助性,因此公司选择的销售策略会在产品之间创建信息和学习依赖性:例如,仅提供一套捆绑包将排除学习客户对焦点的估值和辅助产品。在本文中,我们在以下情况下研究了这种焦点和辅助项目组合的学习策略:(a)纯捆绑向所有客户捆绑,(b)个性化机制,在其中,根据客户的某些观察到的功能,这两种产品都会呈现并以捆绑包或顺序定价,(c)最初(适用于所有客户),并在地平线期间永久切换(如果更有利可图)。我们为所有三种情况设计定价和决策算法,遗憾的是由$ o(d \ sqrt {t} \ log t)$限制,以及第三种情况的最佳切换时间。
translated by 谷歌翻译
我们在广义线性需求模型下考虑与协变量的动态定价问题:卖方可以在$ T $时间段的地平线上动态调整产品的价格,并在每次$ T $时,产品的需求是通过未知的广义线性模型共同由价格和可观察的协变量矢量$ x_t \ in \ mathbb {r} ^ d $。现有文献中的大多数假设协变量矢量$ X_T $的独立和相同分布(i.i.d.);少数论文放松这种假设牺牲模型一般性或产生了次优遗憾的界限。在本文中,我们显示简单的定价算法有$ O(D \ SQRT {T} \ log t)$后悔上限而不假设协变量上的任何统计结构$ x_t $(甚至可以任意选择)。遗憾的上限与对数因子的下限(即使是i.i.d.假设)匹配。我们的论文如此表明(i)i.i.d.获得低遗憾的假设是不需要的,(ii)遗憾的遗憾可以独立于$ x_t $'s的协方差矩阵的(逆)最小特征值,以往的界限。此外,我们讨论了一个更好的遗憾,可以实现更好的遗憾以及如何应用汤普森采样算法来提供价格的有效计算。
translated by 谷歌翻译
价格歧视,这是指为不同客户群体的不同价格进行规定的策略,已广泛用于在线零售。虽然它有助于提高在线零售商的收入,但它可能会对公平产生严重关切,甚至违反了监管和法律。本文研究了公平限制下动态歧视性定价的问题。特别是,我们考虑一个有限的销售长度$ T $的单一产品,为一组客户提供两组客户。每组客户都有其未知的需求功能,需要学习。对于每个销售期间,卖方确定每组的价格并观察其购买行为。虽然现有文学主要侧重于最大化收入,但在动态定价文学中确保不同客户的公平尚未完全探索。在这项工作中,我们采用了(Cohen等人)的公平概念。对于价格公平性,我们在遗憾方面提出了最佳的动态定价政策,从而强制执行严格的价格公平制约。与标准$ \ sqrt {t} $ - 在线学习中的遗憾遗憾,我们表明我们案例中的最佳遗憾是$ \ tilde {\ theta}(t ^ {4/5})$。我们进一步将算法扩展到更普遍的公平概念,包括作为一个特例的需求公平。为了处理这一普通类,我们提出了一个柔和的公平约束,并开发了实现$ \ tilde {o}(t ^ {4/5})$后悔的动态定价政策。
translated by 谷歌翻译
我们考虑具有未知实用程序参数的多项式logit模型(MNL)下的动态分类优化问题。本文研究的主要问题是$ \ varepsilon $ - 污染模型下的模型错误指定,该模型是强大统计和机器学习中的基本模型。特别是,在整个长度$ t $的销售范围内,我们假设客户根据$(1- \ varepsilon)$ - 时间段的$(1- \ varepsilon)的基础多项式logit选择模型进行购买,并进行任意购买取而代之的是在剩余的$ \ varepsilon $ - 分数中的决策。在此模型中,我们通过主动淘汰策略制定了新的强大在线分类优化政策。我们对遗憾建立上限和下界,并表明当分类能力恒定时,我们的政策是$ t $的最佳对数因素。分类能力具有恒定的上限。我们进一步制定了一种完全自适应策略,该政策不需要任何先验知识,即污染参数$ \ varepsilon $。如果存在最佳和亚最佳产品之间存在的亚临时差距,我们还建立了依赖差距的对数遗憾上限和已知的 - $ \ VAREPSILON $和UNKNOWER-$ \ \ VAREPSILON $案例。我们的仿真研究表明,我们的政策表现优于基于上置信度范围(UCB)和汤普森采样的现有政策。
translated by 谷歌翻译
本文在动态定价的背景下调查预先存在的离线数据对在线学习的影响。我们在$ t $期间的销售地平线上研究单一产品动态定价问题。每个时段的需求由产品价格根据具有未知参数的线性需求模型确定。我们假设在销售地平线开始之前,卖方已经有一些预先存在的离线数据。离线数据集包含$ N $示例,其中每个标准是由历史价格和相关的需求观察组成的输入输出对。卖方希望利用预先存在的离线数据和顺序在线数据来最大限度地减少在线学习过程的遗憾。我们的特征在于在线学习过程的最佳遗憾的脱机数据的大小,位置和分散的联合效果。具体而言,离线数据的大小,位置和色散由历史样本数量为$ n $,平均历史价格与最佳价格$ \ delta $之间的距离以及历史价格的标准差价Sigma $分别。我们表明最佳遗憾是$ \ widetilde \ theta \ left(\ sqrt {t} \ wedge \ frac {t} {(n \ wedge t)\ delta ^ 2 + n \ sigma ^ 2} \右)$,基于“面对不确定性”原则的“乐观主义”的学习算法,其遗憾是最佳的对数因子。我们的结果揭示了对脱机数据的大小的最佳遗憾率的惊人变换,我们称之为阶段转型。此外,我们的结果表明,离线数据的位置和分散也对最佳遗憾具有内在效果,我们通过逆平面法量化了这种效果。
translated by 谷歌翻译
我们考虑一个一般的在线随机优化问题,在有限时间段的视野中具有多个预算限制。在每个时间段内,都会揭示奖励功能和多个成本功能,并且决策者需要从凸面和紧凑型措施中指定行动,以收集奖励并消耗预算。每个成本函数对应于一个预算的消费。在每个时期,奖励和成本函数都是从未知分布中得出的,该分布在整个时间内都是非平稳的。决策者的目的是最大化受预算限制的累积奖励。该配方捕获了广泛的应用程序,包括在线线性编程和网络收入管理等。在本文中,我们考虑了两个设置:(i)一个数据驱动的设置,其中真实分布未知,但可以提供先前的估计(可能不准确); (ii)一个不信息的环境,其中真实分布是完全未知的。我们提出了一项基于统一的浪费距离措施,以量化设置(i)中先验估计值的不准确性和设置(ii)中系统的非平稳性。我们表明,拟议的措施导致在两种情况下都能获得统一后悔的必要条件。对于设置(i),我们提出了一种新的算法,该算法采用了原始的偶视角,并将基础分布的先前信息集成到双重空间中的在线梯度下降过程。该算法也自然扩展到非信息设置(II)。在这两种设置下,我们显示相应的算法实现了最佳秩序的遗憾。在数值实验中,我们演示了如何将所提出的算法与重新溶解技术自然整合,以进一步提高经验性能。
translated by 谷歌翻译
在本文中,我们考虑了MNL-Bandit问题的上下文变体。更具体地说,我们考虑了一个动态设置优化问题,决策者为消费者提供了一系列产品(各种产品),并在每回合中观察他们的响应。消费者购买产品以最大化其实用性。我们假设一组属性描述了产品,并且产品的平均效用在这些属性的值中是线性的。我们使用广泛使用的多项式logit(MNL)模型对消费者选择行为进行建模,并考虑动态学习模型参数的决策者问题,同时优化累计收入,超过销售范围$ t $。尽管最近这个问题引起了人们的关注,但许多现有方法通常涉及解决棘手的非凸优化问题。他们的理论绩效保证取决于问题依赖性参数,该参数可能非常大。特别是,此问题的现有算法对$ o(\ sqrt {\ kappa d t})$界后后悔,其中$ \ kappa $是问题依赖性常数,可以对属性的数量具有指数依赖性。在本文中,我们提出了一种乐观的算法,并表明遗憾是由$ o(\ sqrt {dt} + \ kappa)$界定的,从而大大提高了现有方法的性能。此外,我们提出了对优化步骤的放松,该步骤允许进行可牵引的决策,同时保留有利的遗憾保证。
translated by 谷歌翻译
我们研究在线动态定价的问题,具有两种类型的公平限制:“程序公平性”,要求拟议的价格在不同群体之间的预期等同于期望,而“实质性公平”要求公认的价格要求公认的价格在预期中保持平等在不同的群体中。同时进行程序和实质性公平的政策称为“双重公平”。我们表明,双重公平的政策必须是随机的,才能获得比将相同价格分配给不同群体的最佳琐碎政策更高的收入。在两组设置中,我们为达到$ \ tilde {o}(\ sqrt {t})$遗憾的两组定价问题提供了在线学习算法,零过程不公平和$ \ tilde {o}(\ sqrt {t})$对$ t $回合学习的实质性不公平。我们还证明了两个下限,表明这些结果是遗憾和不公平性的,这两者在理论上都是最佳的,直到迭代的对数因素。据我们所知,这是第一个学会定价的动态定价算法,同时满足了两个公平的约束。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
使用始终有效的在线统计学习程序设计动态定价政策是一个重要且尚未解决的问题。最现有的动态定价政策,重点关注所采用的客户选择模型的忠诚度,展示了在定价过程中调整学习统计模型的在线不确定性的有限能力。在本文中,我们提出了一种新颖的方法,可以使用理论担保设计基于动态定价策略的正规化在线统计学习。新方法克服了在线套索程序持续监测的挑战,并具有多种吸引人的财产。特别是,我们做出了决定性观察,即定价决策的始终有效性构建和茁壮成长在线正规方案。我们所提出的在线正则化计划将建议的乐观在线正常化最高似然定价(Oormlp)定价政策具有三大优势:将市场噪声知识编码为定价过程乐观;在线统计学习,以所有决策点的始终有效期以时间均匀的非渐近Oracle不等式信封预测误差过程。这种类型的非渐近推理结果允许我们在实践中设计更具样品有效和强大的动态定价算法。理论上,所提出的OormLP算法利用高维模型的稀疏结构,并在决策范围内确保对数后悔。通过提出一种乐观的在线套索程序,可以根据非渐近鞅浓度的新颖,提出解决过程级别的动态定价问题的乐观在线套索程序来实现这些理论前进。在实验中,我们在不同的合成和实际定价问题设置中评估OormLP,并证明OormLP推进了最先进的方法。
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
我们介绍了一个多臂强盗模型,其中奖励是多个随机变量的总和,每个动作只会改变其中的分布。每次动作之后,代理都会观察所有变量的实现。该模型是由营销活动和推荐系统激励的,在该系统中,变量代表单个客户的结果,例如点击。我们提出了UCB风格的算法,以估计基线上的动作的提升。我们研究了问题的多种变体,包括何时未知基线和受影响的变量,并证明所有这些变量均具有sublrinear后悔界限。我们还提供了较低的界限,以证明我们的建模假设的必要性是合理的。关于合成和现实世界数据集的实验显示了估计不使用这种结构的策略的振奋方法的好处。
translated by 谷歌翻译
决策者经常面对“许多匪徒”问题,其中必须同时学习相关但异构的情境匪徒实例。例如,大型零售商可能希望在许多商店中动态地学习产品需求,以解决定价或库存问题,这使得可以共同学习为服务类似客户的商店;或者,医院网络可能希望在许多提供商中动态学习患者风险以分配个性化干预措施,这使得可以为服务类似患者群体的医院共同学习。我们研究每个匪徒实例中未知参数可以分解为全局参数加上稀疏实例特定术语的设置。然后,我们提出了一种新颖的两级估计器,通过使用强大的统计数据组合(在类似的实例中学到)和套索回归(将结果进行替代),以样本有效的方式利用这种结构。我们在强盗算法中嵌入了这个估计器,并证明它在上下文维度下,它可以改善渐近遗憾界限。这种改进是数据较差的实例的指数。我们进一步展示了我们的结果如何依赖于强盗实例的基础网络结构。
translated by 谷歌翻译
We study the classical Network Revenue Management (NRM) problem with accept/reject decisions and $T$ IID arrivals. We consider a distributional form where each arrival must fall under a finite number of possible categories, each with a deterministic resource consumption vector, but a random value distributed continuously over an interval. We develop an online algorithm that achieves $O(\log^2 T)$ regret under this model, with no further assumptions. We develop another online algorithm that achieves an improved $O(\log T)$ regret, with only a second-order growth assumption. To our knowledge, these are the first results achieving logarithmic-level regret in a continuous-distribution NRM model without further "non-degeneracy" assumptions. Our results are achieved via new techniques including: a new method of bounding myopic regret, a "semi-fluid" relaxation of the offline allocation, and an improved bound on the "dual convergence".
translated by 谷歌翻译
我们在$ gi/gi/1 $队列中研究动态定价和容量大小问题,服务提供商的目标是获得最佳服务费$ p $ $ p $和服务能力$ \ mu $,以最大程度地提高累积预期利润(服务收入减去人员配备成本和延迟罚款)。由于排队动力学的复杂性质,这种问题没有分析解决方案,因此以前的研究经常诉诸于交通重型分析,在这种分析中,到达率和服务率都发送到无穷大。在这项工作中,我们提出了一个旨在解决此问题的在线学习框架,该框架不需要系统的规模增加。我们的框架在队列(GOLIQ)中被称为基于梯度的在线学习。 Goliq将时间范围组织为连续的操作周期,并开出了有效的程序,以使用先前的周期中收集的数据在每个周期中获得改进的定价和人员配备策略。此处的数据包括客户到达的数量,等待时间和服务器的繁忙时间。这种方法的创造力在于其在线性质,这使服务提供商可以通过与环境进行互动来更好。 GOLIQ的有效性得到了(i)理论结果的证实,包括算法收敛和遗憾分析(对数遗憾的束缚),以及(ii)通过模拟实验进行工程确认,以了解各种代表性$ GI/GI/GI/1 $ $ $ $ $。
translated by 谷歌翻译
在古典语境匪徒问题中,在每轮$ t $,学习者观察一些上下文$ c $,选择一些动作$ i $执行,并收到一些奖励$ r_ {i,t}(c)$。我们考虑此问题的变体除了接收奖励$ r_ {i,t}(c)$之外,学习者还要学习其他一些上下文$的$ r_ {i,t}(c')$的值C'$ in设置$ \ mathcal {o} _i(c)$;即,通过在不同的上下文下执行该行动来实现的奖励\ mathcal {o} _i(c)$。这种变体出现在若干战略设置中,例如学习如何在非真实的重复拍卖中出价,最热衷于随着许多平台转换为运行的第一价格拍卖。我们将此问题称为交叉学习的上下文匪徒问题。古典上下围匪徒问题的最佳算法达到$ \ tilde {o}(\ sqrt {ckt})$遗憾针对所有固定策略,其中$ c $是上下文的数量,$ k $的行动数量和$ $次数。我们设计并分析了交叉学习的上下文匪徒问题的新算法,并表明他们的遗憾更好地依赖上下文的数量。在选择动作时学习所有上下文的奖励的完整交叉学习下,即设置$ \ mathcal {o} _i(c)$包含所有上下文,我们显示我们的算法实现后悔$ \ tilde {o}( \ sqrt {kt})$,删除$ c $的依赖。对于任何其他情况,即在部分交叉学习下,$ | \ mathcal {o} _i(c)| <c $ for $(i,c)$,遗憾界限取决于如何设置$ \ mathcal o_i(c)$影响上下文之间的交叉学习的程度。我们从Ad Exchange运行一流拍卖的广告交换中模拟了我们的真实拍卖数据的算法,并表明了它们优于传统的上下文强盗算法。
translated by 谷歌翻译
一流拍卖基本上基于Vickrey拍卖的基于程序化广告的传统竞标方法。就学习而言,首次拍卖更具挑战性,因为最佳招标策略不仅取决于物品的价值,还需要一些其他出价的知识。他们已经升级了续集学习的几种作品,其中许多人考虑以对抗方式选择买方或对手最大出价的型号。即使在最简单的设置中,这也会导致算法,其后悔在$ \ sqrt {t} $方面与时间纵横为$ t $。专注于买方对静止随机环境扮演的情况,我们展示了如何实现显着较低的遗憾:当对手的最大竞标分布是已知的,我们提供了一种遗留算法,其后悔可以低至$ \ log ^ 2(t )$;在必须顺序地学习分发的情况下,对于任何$ \ epsilon> 0 $来说,该算法的概括可以达到$ t ^ {1/3 + \ epsilon} $。为了获得这些结果,我们介绍了两种可能对自己兴趣感兴趣的新颖思想。首先,通过在发布的价格设置中获得的结果进行输,我们提供了一个条件,其中一流的挡板效用在其最佳状态下局部二次。其次,我们利用观察到,在小子间隔上,可以更准确地控制经验分布函数的变化的浓度,而不是使用经典的DVORETZKY-Kiefer-Wolfowitz不等式来控制。数值模拟确认,我们的算法比各种出价分布中提出的替代方案更快地收敛,包括在实际的程序化广告平台上收集的出价。
translated by 谷歌翻译
我们通过审查反馈重复进行一定的第一价格拍卖来研究在线学习,在每次拍卖结束时,出价者只观察获胜的出价,学会了适应性地出价,以最大程度地提高她的累积回报。为了实现这一目标,投标人面临着一个具有挑战性的困境:如果她赢得了竞标 - 获得正收益的唯一方法 - 然后她无法观察其他竞标者的最高竞标,我们认为我们认为这是从中汲取的。一个未知的分布。尽管这一困境让人联想到上下文强盗中的探索探索折衷权,但现有的UCB或汤普森采样算法无法直接解决。在本文中,通过利用第一价格拍卖的结构属性,我们开发了第一个实现$ o(\ sqrt {t} \ log^{2.5} t)$ hearry bund的第一个学习算法(\ sqrt {t} \ log^{2.5} t),这是最小值的最低$ $ \ log $因素,当投标人的私人价值随机生成时。我们这样做是通过在一系列问题上提供算法,称为部分有序的上下文匪徒,该算法将图形反馈跨动作,跨环境跨上下文进行结合,以及在上下文中的部分顺序。我们通过表现出一个奇怪的分离来确定该框架的优势和劣势,即在随机环境下几乎可以独立于动作/背景规模的遗憾,但是在对抗性环境下是不可能的。尽管这一通用框架有限制,但我们进一步利用了第一价格拍卖的结构,并开发了一种学习算法,该算法在存在对手生成的私有价值的情况下,在存在的情况下可以有效地运行样本(并有效地计算)。我们建立了一个$ o(\ sqrt {t} \ log^3 t)$遗憾,以此为此算法,因此提供了对第一价格拍卖的最佳学习保证的完整表征。
translated by 谷歌翻译
Autoregressive processes naturally arise in a large variety of real-world scenarios, including e.g., stock markets, sell forecasting, weather prediction, advertising, and pricing. When addressing a sequential decision-making problem in such a context, the temporal dependence between consecutive observations should be properly accounted for converge to the optimal decision policy. In this work, we propose a novel online learning setting, named Autoregressive Bandits (ARBs), in which the observed reward follows an autoregressive process of order $k$, whose parameters depend on the action the agent chooses, within a finite set of $n$ actions. Then, we devise an optimistic regret minimization algorithm AutoRegressive Upper Confidence Bounds (AR-UCB) that suffers regret of order $\widetilde{\mathcal{O}} \left( \frac{(k+1)^{3/2}\sqrt{nT}}{(1-\Gamma)^2} \right)$, being $T$ the optimization horizon and $\Gamma < 1$ an index of the stability of the system. Finally, we present a numerical validation in several synthetic and one real-world setting, in comparison with general and specific purpose bandit baselines showing the advantages of the proposed approach.
translated by 谷歌翻译
动态治疗方案(DTRS)是个性化的,适应性的,多阶段的治疗计划,可将治疗决策适应个人的初始特征,并在随后的每个阶段中的中级结果和特征,在前阶段受到决策的影响。例子包括对糖尿病,癌症和抑郁症等慢性病的个性化一线和二线治疗,这些治疗适应患者对一线治疗,疾病进展和个人特征的反应。尽管现有文献主要集中于估算离线数据(例如从依次随机试验)中的最佳DTR,但我们研究了以在线方式开发最佳DTR的问题,在线与每个人的互动都会影响我们的累积奖励和我们的数据收集,以供我们的数据收集。未来的学习。我们将其称为DTR匪徒问题。我们提出了一种新颖的算法,通过仔细平衡探索和剥削,可以保证当过渡和奖励模型是线性时,可以实现最佳的遗憾。我们证明了我们的算法及其在合成实验和使用现实世界中对重大抑郁症的适应性治疗的案例研究中的好处。
translated by 谷歌翻译