我们考虑具有未知实用程序参数的多项式logit模型(MNL)下的动态分类优化问题。本文研究的主要问题是$ \ varepsilon $ - 污染模型下的模型错误指定,该模型是强大统计和机器学习中的基本模型。特别是,在整个长度$ t $的销售范围内,我们假设客户根据$(1- \ varepsilon)$ - 时间段的$(1- \ varepsilon)的基础多项式logit选择模型进行购买,并进行任意购买取而代之的是在剩余的$ \ varepsilon $ - 分数中的决策。在此模型中,我们通过主动淘汰策略制定了新的强大在线分类优化政策。我们对遗憾建立上限和下界,并表明当分类能力恒定时,我们的政策是$ t $的最佳对数因素。分类能力具有恒定的上限。我们进一步制定了一种完全自适应策略,该政策不需要任何先验知识,即污染参数$ \ varepsilon $。如果存在最佳和亚最佳产品之间存在的亚临时差距,我们还建立了依赖差距的对数遗憾上限和已知的 - $ \ VAREPSILON $和UNKNOWER-$ \ \ VAREPSILON $案例。我们的仿真研究表明,我们的政策表现优于基于上置信度范围(UCB)和汤普森采样的现有政策。
translated by 谷歌翻译
价格歧视,这是指为不同客户群体的不同价格进行规定的策略,已广泛用于在线零售。虽然它有助于提高在线零售商的收入,但它可能会对公平产生严重关切,甚至违反了监管和法律。本文研究了公平限制下动态歧视性定价的问题。特别是,我们考虑一个有限的销售长度$ T $的单一产品,为一组客户提供两组客户。每组客户都有其未知的需求功能,需要学习。对于每个销售期间,卖方确定每组的价格并观察其购买行为。虽然现有文学主要侧重于最大化收入,但在动态定价文学中确保不同客户的公平尚未完全探索。在这项工作中,我们采用了(Cohen等人)的公平概念。对于价格公平性,我们在遗憾方面提出了最佳的动态定价政策,从而强制执行严格的价格公平制约。与标准$ \ sqrt {t} $ - 在线学习中的遗憾遗憾,我们表明我们案例中的最佳遗憾是$ \ tilde {\ theta}(t ^ {4/5})$。我们进一步将算法扩展到更普遍的公平概念,包括作为一个特例的需求公平。为了处理这一普通类,我们提出了一个柔和的公平约束,并开发了实现$ \ tilde {o}(t ^ {4/5})$后悔的动态定价政策。
translated by 谷歌翻译
本文在动态定价的背景下调查预先存在的离线数据对在线学习的影响。我们在$ t $期间的销售地平线上研究单一产品动态定价问题。每个时段的需求由产品价格根据具有未知参数的线性需求模型确定。我们假设在销售地平线开始之前,卖方已经有一些预先存在的离线数据。离线数据集包含$ N $示例,其中每个标准是由历史价格和相关的需求观察组成的输入输出对。卖方希望利用预先存在的离线数据和顺序在线数据来最大限度地减少在线学习过程的遗憾。我们的特征在于在线学习过程的最佳遗憾的脱机数据的大小,位置和分散的联合效果。具体而言,离线数据的大小,位置和色散由历史样本数量为$ n $,平均历史价格与最佳价格$ \ delta $之间的距离以及历史价格的标准差价Sigma $分别。我们表明最佳遗憾是$ \ widetilde \ theta \ left(\ sqrt {t} \ wedge \ frac {t} {(n \ wedge t)\ delta ^ 2 + n \ sigma ^ 2} \右)$,基于“面对不确定性”原则的“乐观主义”的学习算法,其遗憾是最佳的对数因子。我们的结果揭示了对脱机数据的大小的最佳遗憾率的惊人变换,我们称之为阶段转型。此外,我们的结果表明,离线数据的位置和分散也对最佳遗憾具有内在效果,我们通过逆平面法量化了这种效果。
translated by 谷歌翻译
我们研究在线动态定价的问题,具有两种类型的公平限制:“程序公平性”,要求拟议的价格在不同群体之间的预期等同于期望,而“实质性公平”要求公认的价格要求公认的价格在预期中保持平等在不同的群体中。同时进行程序和实质性公平的政策称为“双重公平”。我们表明,双重公平的政策必须是随机的,才能获得比将相同价格分配给不同群体的最佳琐碎政策更高的收入。在两组设置中,我们为达到$ \ tilde {o}(\ sqrt {t})$遗憾的两组定价问题提供了在线学习算法,零过程不公平和$ \ tilde {o}(\ sqrt {t})$对$ t $回合学习的实质性不公平。我们还证明了两个下限,表明这些结果是遗憾和不公平性的,这两者在理论上都是最佳的,直到迭代的对数因素。据我们所知,这是第一个学会定价的动态定价算法,同时满足了两个公平的约束。
translated by 谷歌翻译
通过新兴应用程序,如现场媒体电子商务,促销和建议,我们介绍和解决了一般的非静止多武装强盗问题,具有以下两个特征:(i)决策者可以拉动和收集每次期间,从最多$ k \,(\ ge 1)美元的奖励; (ii)手臂拉动后的预期奖励立即下降,然后随着ARM空闲时间的增加,非参数恢复。目的是最大化预期累计奖励超过$ T $时间段,我们设计了一类“纯粹的周期性政策”,共同设置了拉动每个臂的时间。对于拟议的政策,我们证明了离线问题和在线问题的性能保证。对于脱机问题,当已知所有型号参数时,所提出的周期性策略获得1- \ Mathcal O(1 / \ Sqrt {k})$的近似率,当$ k $生长时是渐近的最佳状态到无穷远。对于在线问题时,当模型参数未知并且需要动态学习时,我们将脱机周期性策略与在线策略上的上部置信程序进行集成。拟议的在线策略被证明是对脱机基准的近似拥有$ \ widetilde {\ mathcal o}(n \ sqrt {t})。我们的框架和政策设计可能在更广泛的离线规划和在线学习应用程序中阐明,具有非静止和恢复奖励。
translated by 谷歌翻译
以下序列出售了许多产品:首先显示焦点产品,如果购买客户,则显示一种或多种辅助产品以供购买。一个突出的例子是出售航空票,首先显示航班,并在选择时出售了许多辅助机构,例如机舱或袋装选项,座位选择,保险等。该公司必须决定销售格式 - 是按串联捆绑或作为捆绑销售的形式出售 - 以及如何分别或捆绑产品为焦点和辅助产品定价。由于仅在购买焦点产品后才考虑辅助性,因此公司选择的销售策略会在产品之间创建信息和学习依赖性:例如,仅提供一套捆绑包将排除学习客户对焦点的估值和辅助产品。在本文中,我们在以下情况下研究了这种焦点和辅助项目组合的学习策略:(a)纯捆绑向所有客户捆绑,(b)个性化机制,在其中,根据客户的某些观察到的功能,这两种产品都会呈现并以捆绑包或顺序定价,(c)最初(适用于所有客户),并在地平线期间永久切换(如果更有利可图)。我们为所有三种情况设计定价和决策算法,遗憾的是由$ o(d \ sqrt {t} \ log t)$限制,以及第三种情况的最佳切换时间。
translated by 谷歌翻译
我们考虑一个一般的在线随机优化问题,在有限时间段的视野中具有多个预算限制。在每个时间段内,都会揭示奖励功能和多个成本功能,并且决策者需要从凸面和紧凑型措施中指定行动,以收集奖励并消耗预算。每个成本函数对应于一个预算的消费。在每个时期,奖励和成本函数都是从未知分布中得出的,该分布在整个时间内都是非平稳的。决策者的目的是最大化受预算限制的累积奖励。该配方捕获了广泛的应用程序,包括在线线性编程和网络收入管理等。在本文中,我们考虑了两个设置:(i)一个数据驱动的设置,其中真实分布未知,但可以提供先前的估计(可能不准确); (ii)一个不信息的环境,其中真实分布是完全未知的。我们提出了一项基于统一的浪费距离措施,以量化设置(i)中先验估计值的不准确性和设置(ii)中系统的非平稳性。我们表明,拟议的措施导致在两种情况下都能获得统一后悔的必要条件。对于设置(i),我们提出了一种新的算法,该算法采用了原始的偶视角,并将基础分布的先前信息集成到双重空间中的在线梯度下降过程。该算法也自然扩展到非信息设置(II)。在这两种设置下,我们显示相应的算法实现了最佳秩序的遗憾。在数值实验中,我们演示了如何将所提出的算法与重新溶解技术自然整合,以进一步提高经验性能。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
我们在$ gi/gi/1 $队列中研究动态定价和容量大小问题,服务提供商的目标是获得最佳服务费$ p $ $ p $和服务能力$ \ mu $,以最大程度地提高累积预期利润(服务收入减去人员配备成本和延迟罚款)。由于排队动力学的复杂性质,这种问题没有分析解决方案,因此以前的研究经常诉诸于交通重型分析,在这种分析中,到达率和服务率都发送到无穷大。在这项工作中,我们提出了一个旨在解决此问题的在线学习框架,该框架不需要系统的规模增加。我们的框架在队列(GOLIQ)中被称为基于梯度的在线学习。 Goliq将时间范围组织为连续的操作周期,并开出了有效的程序,以使用先前的周期中收集的数据在每个周期中获得改进的定价和人员配备策略。此处的数据包括客户到达的数量,等待时间和服务器的繁忙时间。这种方法的创造力在于其在线性质,这使服务提供商可以通过与环境进行互动来更好。 GOLIQ的有效性得到了(i)理论结果的证实,包括算法收敛和遗憾分析(对数遗憾的束缚),以及(ii)通过模拟实验进行工程确认,以了解各种代表性$ GI/GI/GI/1 $ $ $ $ $。
translated by 谷歌翻译
我们研究了批量线性上下文匪徒的最佳批量遗憾权衡。对于任何批次数$ M $,操作次数$ k $,时间范围$ t $和维度$ d $,我们提供了一种算法,并证明了其遗憾的保证,这是由于技术原因,具有两阶段表达作为时间的时间$ t $ grose。我们还证明了一个令人奇迹的定理,令人惊讶地显示了在问题参数的“问题参数”中的两相遗憾(最高〜对数因子)的最优性,因此建立了确切的批量后悔权衡。与最近的工作\ citep {ruan2020linear}相比,这表明$ m = o(\ log \ log t)$批次实现无需批处理限制的渐近最佳遗憾的渐近最佳遗憾,我们的算法更简单,更易于实际实现。此外,我们的算法实现了所有$ t \ geq d $的最佳遗憾,而\ citep {ruan2020linear}要求$ t $大于$ d $的不切实际的大多项式。沿着我们的分析,我们还证明了一种新的矩阵集中不平等,依赖于他们的动态上限,这是我们的知识,这是其文学中的第一个和独立兴趣。
translated by 谷歌翻译
我们考虑非平稳马尔可夫决策过程中的无模型增强学习(RL)。只要其累积变化不超过某些变化预算,奖励功能和国家过渡功能都可以随时间随时间变化。我们提出了重新启动的Q学习,以上置信度范围(RestartQ-UCB),这是第一个用于非平稳RL的无模型算法,并表明它在动态遗憾方面优于现有的解决方案。具体而言,带有freedman型奖励项的restartq-ucb实现了$ \ widetilde {o}(s^{\ frac {1} {3}} {\ frac {\ frac {1} {1} {3}} {3}} {3}} {3}} {3}} {3}} {3}} {3}} {\ delta ^{\ frac {1} {3}} h t^{\ frac {2} {3}}} $,其中$ s $和$ a $分别是$ \ delta> 0 $的状态和动作的数字是变化预算,$ h $是每集的时间步数,而$ t $是时间步长的总数。我们进一步提出了一种名为Double-Restart Q-UCB的无参数算法,该算法不需要事先了解变化预算。我们证明我们的算法是\ emph {几乎是最佳},通过建立$ \ omega的信息理论下限(s^{\ frac {1} {1} {3}}} a^{\ frac {1} {1} {3}}}}}} \ delta^{\ frac {1} {3}} h^{\ frac {2} {3}}}} t^{\ frac {2} {3}}} $,是非稳态RL中的第一个下下限。数值实验可以根据累积奖励和计算效率来验证RISTARTQ-UCB的优势。我们在相关产品的多代理RL和库存控制的示例中证明了我们的结果的力量。
translated by 谷歌翻译
我们介绍了一个多臂强盗模型,其中奖励是多个随机变量的总和,每个动作只会改变其中的分布。每次动作之后,代理都会观察所有变量的实现。该模型是由营销活动和推荐系统激励的,在该系统中,变量代表单个客户的结果,例如点击。我们提出了UCB风格的算法,以估计基线上的动作的提升。我们研究了问题的多种变体,包括何时未知基线和受影响的变量,并证明所有这些变量均具有sublrinear后悔界限。我们还提供了较低的界限,以证明我们的建模假设的必要性是合理的。关于合成和现实世界数据集的实验显示了估计不使用这种结构的策略的振奋方法的好处。
translated by 谷歌翻译
我们设计了简单,最佳的政策,以确保在经典的多武器匪徒问题中确保对重尾风险的安全。最近,\ cite {fan2021偏差}表明,信息理论优化的匪徒算法患有严重的重尾风险;也就是说,最糟糕的案例可能会以$ 1/t $的速度慢慢衰减,其中$ t $是时间范围。受其结果的启发,我们进一步表明,广泛使用的政策,例如标准的上限约束政策和汤普森采样政策也会产生重型风险。实际上,对于所有“依赖实例依赖的一致”政策,这种重型风险实际上存在。为了确保对这种重型风险的安全性,对于两臂强盗设置,我们提供了一种简单的政策设计,即(i)具有最差的最佳性能,可用于预期的遗憾$ \ tilde o(\ sqrt {t} )$和(ii)具有最坏的尾巴概率,即以指数率$ \ exp( - \ omega(\ sqrt {t}))$产生线性遗憾衰减。我们进一步证明,尾巴概率的这种指数衰减率在所有具有最差最佳最优性的政策中都是最佳的,这些损失率是预期的。最后,我们使用任意$ k $的武器数量将政策设计和分析改进了一般环境。我们为在政策设计下的任何遗憾阈值中提供详细的尾巴概率表征。也就是说,产生大于$ x $的遗憾的最坏情况是由$ \ exp( - \ omega(x/\ sqrt {kt}))$上限。进行数值实验以说明理论发现。我们的结果揭示了对一致性和轻尾风险之间不兼容的见解,而这表明对预期的遗憾和轻尾风险的最佳最佳性是兼容的。
translated by 谷歌翻译
We study time-inhomogeneous episodic reinforcement learning (RL) under general function approximation and sparse rewards. We design a new algorithm, Variance-weighted Optimistic $Q$-Learning (VO$Q$L), based on $Q$-learning and bound its regret assuming completeness and bounded Eluder dimension for the regression function class. As a special case, VO$Q$L achieves $\tilde{O}(d\sqrt{HT}+d^6H^{5})$ regret over $T$ episodes for a horizon $H$ MDP under ($d$-dimensional) linear function approximation, which is asymptotically optimal. Our algorithm incorporates weighted regression-based upper and lower bounds on the optimal value function to obtain this improved regret. The algorithm is computationally efficient given a regression oracle over the function class, making this the first computationally tractable and statistically optimal approach for linear MDPs.
translated by 谷歌翻译
我们研究了具有线性函数近似增强学习中的随机最短路径(SSP)问题,其中过渡内核表示为未知模型的线性混合物。我们将此类别的SSP问题称为线性混合物SSP。我们提出了一种具有Hoeffding-type置信度的新型算法,用于学习线性混合物SSP,可以获得$ \ tilde {\ Mathcal {o}}}}(d B _ {\ star}^{1.5} \ sqrt {k/c_ {k/c_ {k/c_ {k/c_ { \ min}})$遗憾。这里$ k $是情节的数量,$ d $是混合模型中功能映射的维度,$ b _ {\ star} $限制了最佳策略的预期累积成本,$ c _ {\ min}>> 0 $是成本函数的下限。当$ c _ {\ min} = 0 $和$ \ tilde {\ mathcal {o}}}(k^{2/3})$遗憾时,我们的算法也适用于情况。据我们所知,这是第一个具有sublrinear遗憾保证线性混合物SSP的算法。此外,我们设计了精致的伯恩斯坦型信心集并提出了改进的算法,该算法可实现$ \ tilde {\ Mathcal {o}}}(d b _ {\ star} \ sqrt {k/c/c/c {k/c _ {\ min}}) $遗憾。为了补充遗憾的上限,我们还证明了$ \ omega(db _ {\ star} \ sqrt {k})$的下限。因此,我们的改进算法将下限匹配到$ 1/\ sqrt {c _ {\ min}} $ factor和poly-logarithmic因素,从而实现了近乎最佳的遗憾保证。
translated by 谷歌翻译
我们在嵌套政策类别的存在下研究匪徒场景中的模型选择问题,目的是获得同时的对抗和随机性(“两全其美”)高概率的遗憾保证。我们的方法要求每个基础学习者都有一个候选人的遗憾约束,可能会或可能不会举行,而我们的元算法按照一定时间表来扮演每个基础学习者,该时间表使基础学习者的候选人后悔的界限保持平衡,直到被发现违反他们的保证为止。我们开发了专门设计的仔细的错误指定测试,以将上述模型选择标准与利用环境的(潜在良性)性质的能力相结合。我们在对抗环境中恢复畜栏算法的模型选择保证,但是在实现高概率后悔界限的附加益处,特别是在嵌套对抗性线性斑块的情况下。更重要的是,我们的模型选择结果也同时在差距假设​​下的随机环境中同时保持。这些是在(线性)匪徒场景中执行模型选择时,可以达到世界上最好的(随机和对抗性)保证的第一个理论结果。
translated by 谷歌翻译
我们通过审查反馈重复进行一定的第一价格拍卖来研究在线学习,在每次拍卖结束时,出价者只观察获胜的出价,学会了适应性地出价,以最大程度地提高她的累积回报。为了实现这一目标,投标人面临着一个具有挑战性的困境:如果她赢得了竞标 - 获得正收益的唯一方法 - 然后她无法观察其他竞标者的最高竞标,我们认为我们认为这是从中汲取的。一个未知的分布。尽管这一困境让人联想到上下文强盗中的探索探索折衷权,但现有的UCB或汤普森采样算法无法直接解决。在本文中,通过利用第一价格拍卖的结构属性,我们开发了第一个实现$ o(\ sqrt {t} \ log^{2.5} t)$ hearry bund的第一个学习算法(\ sqrt {t} \ log^{2.5} t),这是最小值的最低$ $ \ log $因素,当投标人的私人价值随机生成时。我们这样做是通过在一系列问题上提供算法,称为部分有序的上下文匪徒,该算法将图形反馈跨动作,跨环境跨上下文进行结合,以及在上下文中的部分顺序。我们通过表现出一个奇怪的分离来确定该框架的优势和劣势,即在随机环境下几乎可以独立于动作/背景规模的遗憾,但是在对抗性环境下是不可能的。尽管这一通用框架有限制,但我们进一步利用了第一价格拍卖的结构,并开发了一种学习算法,该算法在存在对手生成的私有价值的情况下,在存在的情况下可以有效地运行样本(并有效地计算)。我们建立了一个$ o(\ sqrt {t} \ log^3 t)$遗憾,以此为此算法,因此提供了对第一价格拍卖的最佳学习保证的完整表征。
translated by 谷歌翻译
在古典语境匪徒问题中,在每轮$ t $,学习者观察一些上下文$ c $,选择一些动作$ i $执行,并收到一些奖励$ r_ {i,t}(c)$。我们考虑此问题的变体除了接收奖励$ r_ {i,t}(c)$之外,学习者还要学习其他一些上下文$的$ r_ {i,t}(c')$的值C'$ in设置$ \ mathcal {o} _i(c)$;即,通过在不同的上下文下执行该行动来实现的奖励\ mathcal {o} _i(c)$。这种变体出现在若干战略设置中,例如学习如何在非真实的重复拍卖中出价,最热衷于随着许多平台转换为运行的第一价格拍卖。我们将此问题称为交叉学习的上下文匪徒问题。古典上下围匪徒问题的最佳算法达到$ \ tilde {o}(\ sqrt {ckt})$遗憾针对所有固定策略,其中$ c $是上下文的数量,$ k $的行动数量和$ $次数。我们设计并分析了交叉学习的上下文匪徒问题的新算法,并表明他们的遗憾更好地依赖上下文的数量。在选择动作时学习所有上下文的奖励的完整交叉学习下,即设置$ \ mathcal {o} _i(c)$包含所有上下文,我们显示我们的算法实现后悔$ \ tilde {o}( \ sqrt {kt})$,删除$ c $的依赖。对于任何其他情况,即在部分交叉学习下,$ | \ mathcal {o} _i(c)| <c $ for $(i,c)$,遗憾界限取决于如何设置$ \ mathcal o_i(c)$影响上下文之间的交叉学习的程度。我们从Ad Exchange运行一流拍卖的广告交换中模拟了我们的真实拍卖数据的算法,并表明了它们优于传统的上下文强盗算法。
translated by 谷歌翻译
我们研究了在高维稀疏线性上下文匪徒中动态批处理学习的问题,在给定的最大批量约束下,决策者在每个批次结束时只能观察奖励,可以动态地决定如何进行奖励。许多人将包括在下一批中(在当前批次结束时)以及每批采用哪些个性化行动选择方案。在各种实际情况下,这种批处理的限制无处不在,包括在临床试验中的营销和医疗选择中的个性化产品。我们通过后悔的下限表征了此问题中的基本学习限制,并提供了匹配的上限(直至日志因素),从而为此问题开了最佳方案。据我们所知,我们的工作为在高维稀疏线性上下文匪徒中对动态批处理学习的理论理解提供了第一个侵入。值得注意的是,即使我们的结果的一种特殊情况 - 当不存在批处理约束时 - 都会产生简单的无探索算法使用Lasso估算器,已经达到了在高维线性匪板中为标准在线学习的最小值最佳遗憾(对于No-Cargin情况),在高维上下文Bandits的新兴文献中似乎未知。
translated by 谷歌翻译
决策者经常面对“许多匪徒”问题,其中必须同时学习相关但异构的情境匪徒实例。例如,大型零售商可能希望在许多商店中动态地学习产品需求,以解决定价或库存问题,这使得可以共同学习为服务类似客户的商店;或者,医院网络可能希望在许多提供商中动态学习患者风险以分配个性化干预措施,这使得可以为服务类似患者群体的医院共同学习。我们研究每个匪徒实例中未知参数可以分解为全局参数加上稀疏实例特定术语的设置。然后,我们提出了一种新颖的两级估计器,通过使用强大的统计数据组合(在类似的实例中学到)和套索回归(将结果进行替代),以样本有效的方式利用这种结构。我们在强盗算法中嵌入了这个估计器,并证明它在上下文维度下,它可以改善渐近遗憾界限。这种改进是数据较差的实例的指数。我们进一步展示了我们的结果如何依赖于强盗实例的基础网络结构。
translated by 谷歌翻译