价格歧视,这是指为不同客户群体的不同价格进行规定的策略,已广泛用于在线零售。虽然它有助于提高在线零售商的收入,但它可能会对公平产生严重关切,甚至违反了监管和法律。本文研究了公平限制下动态歧视性定价的问题。特别是,我们考虑一个有限的销售长度$ T $的单一产品,为一组客户提供两组客户。每组客户都有其未知的需求功能,需要学习。对于每个销售期间,卖方确定每组的价格并观察其购买行为。虽然现有文学主要侧重于最大化收入,但在动态定价文学中确保不同客户的公平尚未完全探索。在这项工作中,我们采用了(Cohen等人)的公平概念。对于价格公平性,我们在遗憾方面提出了最佳的动态定价政策,从而强制执行严格的价格公平制约。与标准$ \ sqrt {t} $ - 在线学习中的遗憾遗憾,我们表明我们案例中的最佳遗憾是$ \ tilde {\ theta}(t ^ {4/5})$。我们进一步将算法扩展到更普遍的公平概念,包括作为一个特例的需求公平。为了处理这一普通类,我们提出了一个柔和的公平约束,并开发了实现$ \ tilde {o}(t ^ {4/5})$后悔的动态定价政策。
translated by 谷歌翻译
我们考虑具有未知实用程序参数的多项式logit模型(MNL)下的动态分类优化问题。本文研究的主要问题是$ \ varepsilon $ - 污染模型下的模型错误指定,该模型是强大统计和机器学习中的基本模型。特别是,在整个长度$ t $的销售范围内,我们假设客户根据$(1- \ varepsilon)$ - 时间段的$(1- \ varepsilon)的基础多项式logit选择模型进行购买,并进行任意购买取而代之的是在剩余的$ \ varepsilon $ - 分数中的决策。在此模型中,我们通过主动淘汰策略制定了新的强大在线分类优化政策。我们对遗憾建立上限和下界,并表明当分类能力恒定时,我们的政策是$ t $的最佳对数因素。分类能力具有恒定的上限。我们进一步制定了一种完全自适应策略,该政策不需要任何先验知识,即污染参数$ \ varepsilon $。如果存在最佳和亚最佳产品之间存在的亚临时差距,我们还建立了依赖差距的对数遗憾上限和已知的 - $ \ VAREPSILON $和UNKNOWER-$ \ \ VAREPSILON $案例。我们的仿真研究表明,我们的政策表现优于基于上置信度范围(UCB)和汤普森采样的现有政策。
translated by 谷歌翻译
我们研究在线动态定价的问题,具有两种类型的公平限制:“程序公平性”,要求拟议的价格在不同群体之间的预期等同于期望,而“实质性公平”要求公认的价格要求公认的价格在预期中保持平等在不同的群体中。同时进行程序和实质性公平的政策称为“双重公平”。我们表明,双重公平的政策必须是随机的,才能获得比将相同价格分配给不同群体的最佳琐碎政策更高的收入。在两组设置中,我们为达到$ \ tilde {o}(\ sqrt {t})$遗憾的两组定价问题提供了在线学习算法,零过程不公平和$ \ tilde {o}(\ sqrt {t})$对$ t $回合学习的实质性不公平。我们还证明了两个下限,表明这些结果是遗憾和不公平性的,这两者在理论上都是最佳的,直到迭代的对数因素。据我们所知,这是第一个学会定价的动态定价算法,同时满足了两个公平的约束。
translated by 谷歌翻译
除了最大化总收入外,许多行业的决策者还希望保证跨不同资源的公平消费,并避免饱和某些资源。在这些实际需求的推动下,本文研究了基于价格的网络收入管理问题,需求学习和公平性关注不同资源的消费。我们介绍了正式的收入,即以公平的正规化为目标,作为我们的目标,将公平性纳入收入最大化目标。我们提出了一种原始的偶型在线政策,并使用受到信心限制(UCB)的需求学习方法最大化正规化收入。我们采用了几种创新技术,以使我们的算法成为连续价格集和广泛的公平规则化的统一和计算高效的框架。我们的算法实现了$ \ tilde o(n^{5/2} \ sqrt {t})$的最坏遗憾,其中$ n $表示产品数,$ t $表示时间段。一些NRM示例中的数值实验证明了我们算法在平衡收入和公平性方面的有效性。
translated by 谷歌翻译
本文在动态定价的背景下调查预先存在的离线数据对在线学习的影响。我们在$ t $期间的销售地平线上研究单一产品动态定价问题。每个时段的需求由产品价格根据具有未知参数的线性需求模型确定。我们假设在销售地平线开始之前,卖方已经有一些预先存在的离线数据。离线数据集包含$ N $示例,其中每个标准是由历史价格和相关的需求观察组成的输入输出对。卖方希望利用预先存在的离线数据和顺序在线数据来最大限度地减少在线学习过程的遗憾。我们的特征在于在线学习过程的最佳遗憾的脱机数据的大小,位置和分散的联合效果。具体而言,离线数据的大小,位置和色散由历史样本数量为$ n $,平均历史价格与最佳价格$ \ delta $之间的距离以及历史价格的标准差价Sigma $分别。我们表明最佳遗憾是$ \ widetilde \ theta \ left(\ sqrt {t} \ wedge \ frac {t} {(n \ wedge t)\ delta ^ 2 + n \ sigma ^ 2} \右)$,基于“面对不确定性”原则的“乐观主义”的学习算法,其遗憾是最佳的对数因子。我们的结果揭示了对脱机数据的大小的最佳遗憾率的惊人变换,我们称之为阶段转型。此外,我们的结果表明,离线数据的位置和分散也对最佳遗憾具有内在效果,我们通过逆平面法量化了这种效果。
translated by 谷歌翻译
以下序列出售了许多产品:首先显示焦点产品,如果购买客户,则显示一种或多种辅助产品以供购买。一个突出的例子是出售航空票,首先显示航班,并在选择时出售了许多辅助机构,例如机舱或袋装选项,座位选择,保险等。该公司必须决定销售格式 - 是按串联捆绑或作为捆绑销售的形式出售 - 以及如何分别或捆绑产品为焦点和辅助产品定价。由于仅在购买焦点产品后才考虑辅助性,因此公司选择的销售策略会在产品之间创建信息和学习依赖性:例如,仅提供一套捆绑包将排除学习客户对焦点的估值和辅助产品。在本文中,我们在以下情况下研究了这种焦点和辅助项目组合的学习策略:(a)纯捆绑向所有客户捆绑,(b)个性化机制,在其中,根据客户的某些观察到的功能,这两种产品都会呈现并以捆绑包或顺序定价,(c)最初(适用于所有客户),并在地平线期间永久切换(如果更有利可图)。我们为所有三种情况设计定价和决策算法,遗憾的是由$ o(d \ sqrt {t} \ log t)$限制,以及第三种情况的最佳切换时间。
translated by 谷歌翻译
我们考虑一个一般的在线随机优化问题,在有限时间段的视野中具有多个预算限制。在每个时间段内,都会揭示奖励功能和多个成本功能,并且决策者需要从凸面和紧凑型措施中指定行动,以收集奖励并消耗预算。每个成本函数对应于一个预算的消费。在每个时期,奖励和成本函数都是从未知分布中得出的,该分布在整个时间内都是非平稳的。决策者的目的是最大化受预算限制的累积奖励。该配方捕获了广泛的应用程序,包括在线线性编程和网络收入管理等。在本文中,我们考虑了两个设置:(i)一个数据驱动的设置,其中真实分布未知,但可以提供先前的估计(可能不准确); (ii)一个不信息的环境,其中真实分布是完全未知的。我们提出了一项基于统一的浪费距离措施,以量化设置(i)中先验估计值的不准确性和设置(ii)中系统的非平稳性。我们表明,拟议的措施导致在两种情况下都能获得统一后悔的必要条件。对于设置(i),我们提出了一种新的算法,该算法采用了原始的偶视角,并将基础分布的先前信息集成到双重空间中的在线梯度下降过程。该算法也自然扩展到非信息设置(II)。在这两种设置下,我们显示相应的算法实现了最佳秩序的遗憾。在数值实验中,我们演示了如何将所提出的算法与重新溶解技术自然整合,以进一步提高经验性能。
translated by 谷歌翻译
我们在广义线性需求模型下考虑与协变量的动态定价问题:卖方可以在$ T $时间段的地平线上动态调整产品的价格,并在每次$ T $时,产品的需求是通过未知的广义线性模型共同由价格和可观察的协变量矢量$ x_t \ in \ mathbb {r} ^ d $。现有文献中的大多数假设协变量矢量$ X_T $的独立和相同分布(i.i.d.);少数论文放松这种假设牺牲模型一般性或产生了次优遗憾的界限。在本文中,我们显示简单的定价算法有$ O(D \ SQRT {T} \ log t)$后悔上限而不假设协变量上的任何统计结构$ x_t $(甚至可以任意选择)。遗憾的上限与对数因子的下限(即使是i.i.d.假设)匹配。我们的论文如此表明(i)i.i.d.获得低遗憾的假设是不需要的,(ii)遗憾的遗憾可以独立于$ x_t $'s的协方差矩阵的(逆)最小特征值,以往的界限。此外,我们讨论了一个更好的遗憾,可以实现更好的遗憾以及如何应用汤普森采样算法来提供价格的有效计算。
translated by 谷歌翻译
我们考虑随机多武装强盗(MAB)问题,延迟影响了行动。在我们的环境中,过去采取的行动在随后的未来影响了ARM奖励。在现实世界中,行动的这种延迟影响是普遍的。例如,为某个社会群体中的人员偿还贷款的能力可能历史上历史上批准贷款申请的频率频率。如果银行将贷款申请拒绝拒绝弱势群体,则可以创建反馈循环,进一步损害该群体中获取贷款的机会。在本文中,我们制定了在多武装匪徒的背景下的行动延迟和长期影响。由于在学习期间,我们将强盗设置概括为对这种“偏置”的依赖性进行编码。目标是随着时间的推移最大化收集的公用事业,同时考虑到历史行动延迟影响所产生的动态。我们提出了一种算法,实现了$ \ tilde {\ mathcal {o}}的遗憾,并显示$ \ omega(kt ^ {2/3})$的匹配遗憾下限,其中$ k $是武器数量,$ t $是学习地平线。我们的结果通过添加技术来补充强盗文献,以处理具有长期影响的行动,并对设计公平算法有影响。
translated by 谷歌翻译
在社会背景下的算法决策,例如零售定价,贷款管理,在线平台上的建议等,通常涉及为了学习而进行决策的实验,这导致受这些决策影响的人们的不公平感知。因此,有必要在此类决策过程中嵌入适当的公平概念。本文的目的是通过一种新颖的元观念来强调公平的时间概念与在线决策之间的丰富界面,以确保在决策时确保公平。考虑到静态决策的一些任意比较公平概念(例如,学生最多应支付一般成人价格的90%),如果满足上述公平概念,则相应的在线决策算法在决策时满足公平性对于任何与过去的决定相比,收到决定的任何实体。我们表明,这一基本要求引入了在线决策中的新方法论挑战。我们说明了在随机凸优化的背景下,在比较公平的约束下,在随机凸优化的背景下解决这些挑战所必需的新方法,该方法取决于实体所收到的决策,这取决于过去每个人都收到的决策。该论文展示了由于时间公平的关注而引起的在线决策中的新研究机会。
translated by 谷歌翻译
我们在$ gi/gi/1 $队列中研究动态定价和容量大小问题,服务提供商的目标是获得最佳服务费$ p $ $ p $和服务能力$ \ mu $,以最大程度地提高累积预期利润(服务收入减去人员配备成本和延迟罚款)。由于排队动力学的复杂性质,这种问题没有分析解决方案,因此以前的研究经常诉诸于交通重型分析,在这种分析中,到达率和服务率都发送到无穷大。在这项工作中,我们提出了一个旨在解决此问题的在线学习框架,该框架不需要系统的规模增加。我们的框架在队列(GOLIQ)中被称为基于梯度的在线学习。 Goliq将时间范围组织为连续的操作周期,并开出了有效的程序,以使用先前的周期中收集的数据在每个周期中获得改进的定价和人员配备策略。此处的数据包括客户到达的数量,等待时间和服务器的繁忙时间。这种方法的创造力在于其在线性质,这使服务提供商可以通过与环境进行互动来更好。 GOLIQ的有效性得到了(i)理论结果的证实,包括算法收敛和遗憾分析(对数遗憾的束缚),以及(ii)通过模拟实验进行工程确认,以了解各种代表性$ GI/GI/GI/1 $ $ $ $ $。
translated by 谷歌翻译
我们研究了一个决策者的问题,即当面对参与决策(随机)取决于他们获得的激励措施的代理商时,发现最佳的货币激励计划。我们的重点是限制的政策,以实现两种公平性能,这些公平性能排除了不同的代理人平均经历不同治疗的结果。我们将问题提出为高维的随机优化问题,并通过使用紧密相关的确定性变体进行研究。我们表明,该确定性变体的最佳静态解决方案对于在公平性约束下的动态问题均非最佳。尽管解决最佳静态解决方案会引起非凸优化问题,但我们发现了一个结构性属性,该属性使我们能够设计一种可拖延,快速的启发式策略。利益相关者保留的传统计划忽略公平限制;确实,这些目的是利用差异化激励与系统的反复互动。我们的工作(i)表明,即使没有明确的歧视,动态政策也可能通过改变系统的类型组成而无意间歧视不同类型的药物,并且(ii)提出了渐近的最佳政策,以避免这种歧视性局势。
translated by 谷歌翻译
在线学习通常需要探索以最大程度地提高长期奖励,但这是以短期“遗憾”为代价的。我们研究如何在多个小组之间分担这种探索成本。例如,在临床试验环境中,分配了亚最佳治疗的患者有效地产生了勘探成本。当患者根据种族或年龄与自然群体相关联时,自然要问任何单一群体所承担的探索成本是否“公平”。如此有动力,我们介绍了“分组”的强盗模型。我们利用公理讨价还价的理论,尤其是纳什议价解决方案,以形式化可能构成跨群体勘探成本的公平分裂的方式。一方面,我们表明,任何遗憾的政策都引起了最不公平的结果:此类政策将在可能的情况下传递最“处于弱势”的群体。更具建设性的方式,我们得出了最佳公平且同时享受“公平价格”的政策。我们通过对华法林剂量的上下文匪徒进行案例研究来说明我们的算法框架的相对优点,我们关注多个种族和年龄段的探索成本。
translated by 谷歌翻译
通过新兴应用程序,如现场媒体电子商务,促销和建议,我们介绍和解决了一般的非静止多武装强盗问题,具有以下两个特征:(i)决策者可以拉动和收集每次期间,从最多$ k \,(\ ge 1)美元的奖励; (ii)手臂拉动后的预期奖励立即下降,然后随着ARM空闲时间的增加,非参数恢复。目的是最大化预期累计奖励超过$ T $时间段,我们设计了一类“纯粹的周期性政策”,共同设置了拉动每个臂的时间。对于拟议的政策,我们证明了离线问题和在线问题的性能保证。对于脱机问题,当已知所有型号参数时,所提出的周期性策略获得1- \ Mathcal O(1 / \ Sqrt {k})$的近似率,当$ k $生长时是渐近的最佳状态到无穷远。对于在线问题时,当模型参数未知并且需要动态学习时,我们将脱机周期性策略与在线策略上的上部置信程序进行集成。拟议的在线策略被证明是对脱机基准的近似拥有$ \ widetilde {\ mathcal o}(n \ sqrt {t})。我们的框架和政策设计可能在更广泛的离线规划和在线学习应用程序中阐明,具有非静止和恢复奖励。
translated by 谷歌翻译
我们研究了批量线性上下文匪徒的最佳批量遗憾权衡。对于任何批次数$ M $,操作次数$ k $,时间范围$ t $和维度$ d $,我们提供了一种算法,并证明了其遗憾的保证,这是由于技术原因,具有两阶段表达作为时间的时间$ t $ grose。我们还证明了一个令人奇迹的定理,令人惊讶地显示了在问题参数的“问题参数”中的两相遗憾(最高〜对数因子)的最优性,因此建立了确切的批量后悔权衡。与最近的工作\ citep {ruan2020linear}相比,这表明$ m = o(\ log \ log t)$批次实现无需批处理限制的渐近最佳遗憾的渐近最佳遗憾,我们的算法更简单,更易于实际实现。此外,我们的算法实现了所有$ t \ geq d $的最佳遗憾,而\ citep {ruan2020linear}要求$ t $大于$ d $的不切实际的大多项式。沿着我们的分析,我们还证明了一种新的矩阵集中不平等,依赖于他们的动态上限,这是我们的知识,这是其文学中的第一个和独立兴趣。
translated by 谷歌翻译
资源限制的在线分配问题是收入管理和在线广告中的核心问题。在这些问题中,请求在有限的地平线期间顺序到达,对于每个请求,决策者需要选择消耗一定数量资源并生成奖励的动作。目标是最大限度地提高累计奖励,这是对资源总消费的限制。在本文中,我们考虑一种数据驱动的设置,其中使用决策者未知的输入模型生成每个请求的奖励和资源消耗。我们设计了一般的算法算法,可以在各种输入模型中实现良好的性能,而不知道它们面临的类型类型。特别是,我们的算法在独立和相同的分布式输入以及各种非静止随机输入模型下是渐近的最佳选择,并且当输入是对抗性时,它们达到渐近最佳的固定竞争比率。我们的算法在Lagrangian双色空间中运行:它们为使用在线镜像血管更新的每个资源维护双倍乘数。通过相应地选择参考功能,我们恢复双梯度下降和双乘法权重更新算法。与现有的在线分配问题的现有方法相比,所产生的算法简单,快速,不需要在收入函数,消费函数和动作空间中凸起。我们将应用程序讨论到网络收入管理,在线竞标,重复拍卖,预算限制,与高熵的在线比例匹配,以及具有有限库存的个性化分类优化。
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
通过在线实验和违规学习中的实践需求激励,我们研究了安全最佳设计的问题,在那里我们开发了一个有效探索的数据记录策略,同时通过基线生产政策实现竞争奖励。我们首先展示,也许令人惊讶的是,尽管安全,但尽管安全,但尽管是安全的,但仍有统一探索的常见做法是最大化信息增益的次优。然后,我们提出了一个安全的最佳日志记录策略,因为没有有关操作的预期奖励的侧面信息。我们通过考虑侧面信息来改进这种设计,并且还通过线性奖励模型扩展到大量动作的方法。我们分析了我们的数据记录策略如何影响禁止策略学习中的错误。最后,我们通过进行广泛的实验,经验验证了我们设计的好处。
translated by 谷歌翻译
使用始终有效的在线统计学习程序设计动态定价政策是一个重要且尚未解决的问题。最现有的动态定价政策,重点关注所采用的客户选择模型的忠诚度,展示了在定价过程中调整学习统计模型的在线不确定性的有限能力。在本文中,我们提出了一种新颖的方法,可以使用理论担保设计基于动态定价策略的正规化在线统计学习。新方法克服了在线套索程序持续监测的挑战,并具有多种吸引人的财产。特别是,我们做出了决定性观察,即定价决策的始终有效性构建和茁壮成长在线正规方案。我们所提出的在线正则化计划将建议的乐观在线正常化最高似然定价(Oormlp)定价政策具有三大优势:将市场噪声知识编码为定价过程乐观;在线统计学习,以所有决策点的始终有效期以时间均匀的非渐近Oracle不等式信封预测误差过程。这种类型的非渐近推理结果允许我们在实践中设计更具样品有效和强大的动态定价算法。理论上,所提出的OormLP算法利用高维模型的稀疏结构,并在决策范围内确保对数后悔。通过提出一种乐观的在线套索程序,可以根据非渐近鞅浓度的新颖,提出解决过程级别的动态定价问题的乐观在线套索程序来实现这些理论前进。在实验中,我们在不同的合成和实际定价问题设置中评估OormLP,并证明OormLP推进了最先进的方法。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译