一流拍卖基本上基于Vickrey拍卖的基于程序化广告的传统竞标方法。就学习而言,首次拍卖更具挑战性,因为最佳招标策略不仅取决于物品的价值,还需要一些其他出价的知识。他们已经升级了续集学习的几种作品,其中许多人考虑以对抗方式选择买方或对手最大出价的型号。即使在最简单的设置中,这也会导致算法,其后悔在$ \ sqrt {t} $方面与时间纵横为$ t $。专注于买方对静止随机环境扮演的情况,我们展示了如何实现显着较低的遗憾:当对手的最大竞标分布是已知的,我们提供了一种遗留算法,其后悔可以低至$ \ log ^ 2(t )$;在必须顺序地学习分发的情况下,对于任何$ \ epsilon> 0 $来说,该算法的概括可以达到$ t ^ {1/3 + \ epsilon} $。为了获得这些结果,我们介绍了两种可能对自己兴趣感兴趣的新颖思想。首先,通过在发布的价格设置中获得的结果进行输,我们提供了一个条件,其中一流的挡板效用在其最佳状态下局部二次。其次,我们利用观察到,在小子间隔上,可以更准确地控制经验分布函数的变化的浓度,而不是使用经典的DVORETZKY-Kiefer-Wolfowitz不等式来控制。数值模拟确认,我们的算法比各种出价分布中提出的替代方案更快地收敛,包括在实际的程序化广告平台上收集的出价。
translated by 谷歌翻译
我们通过审查反馈重复进行一定的第一价格拍卖来研究在线学习,在每次拍卖结束时,出价者只观察获胜的出价,学会了适应性地出价,以最大程度地提高她的累积回报。为了实现这一目标,投标人面临着一个具有挑战性的困境:如果她赢得了竞标 - 获得正收益的唯一方法 - 然后她无法观察其他竞标者的最高竞标,我们认为我们认为这是从中汲取的。一个未知的分布。尽管这一困境让人联想到上下文强盗中的探索探索折衷权,但现有的UCB或汤普森采样算法无法直接解决。在本文中,通过利用第一价格拍卖的结构属性,我们开发了第一个实现$ o(\ sqrt {t} \ log^{2.5} t)$ hearry bund的第一个学习算法(\ sqrt {t} \ log^{2.5} t),这是最小值的最低$ $ \ log $因素,当投标人的私人价值随机生成时。我们这样做是通过在一系列问题上提供算法,称为部分有序的上下文匪徒,该算法将图形反馈跨动作,跨环境跨上下文进行结合,以及在上下文中的部分顺序。我们通过表现出一个奇怪的分离来确定该框架的优势和劣势,即在随机环境下几乎可以独立于动作/背景规模的遗憾,但是在对抗性环境下是不可能的。尽管这一通用框架有限制,但我们进一步利用了第一价格拍卖的结构,并开发了一种学习算法,该算法在存在对手生成的私有价值的情况下,在存在的情况下可以有效地运行样本(并有效地计算)。我们建立了一个$ o(\ sqrt {t} \ log^3 t)$遗憾,以此为此算法,因此提供了对第一价格拍卖的最佳学习保证的完整表征。
translated by 谷歌翻译
本文在动态定价的背景下调查预先存在的离线数据对在线学习的影响。我们在$ t $期间的销售地平线上研究单一产品动态定价问题。每个时段的需求由产品价格根据具有未知参数的线性需求模型确定。我们假设在销售地平线开始之前,卖方已经有一些预先存在的离线数据。离线数据集包含$ N $示例,其中每个标准是由历史价格和相关的需求观察组成的输入输出对。卖方希望利用预先存在的离线数据和顺序在线数据来最大限度地减少在线学习过程的遗憾。我们的特征在于在线学习过程的最佳遗憾的脱机数据的大小,位置和分散的联合效果。具体而言,离线数据的大小,位置和色散由历史样本数量为$ n $,平均历史价格与最佳价格$ \ delta $之间的距离以及历史价格的标准差价Sigma $分别。我们表明最佳遗憾是$ \ widetilde \ theta \ left(\ sqrt {t} \ wedge \ frac {t} {(n \ wedge t)\ delta ^ 2 + n \ sigma ^ 2} \右)$,基于“面对不确定性”原则的“乐观主义”的学习算法,其遗憾是最佳的对数因子。我们的结果揭示了对脱机数据的大小的最佳遗憾率的惊人变换,我们称之为阶段转型。此外,我们的结果表明,离线数据的位置和分散也对最佳遗憾具有内在效果,我们通过逆平面法量化了这种效果。
translated by 谷歌翻译
我们介绍了一个多臂强盗模型,其中奖励是多个随机变量的总和,每个动作只会改变其中的分布。每次动作之后,代理都会观察所有变量的实现。该模型是由营销活动和推荐系统激励的,在该系统中,变量代表单个客户的结果,例如点击。我们提出了UCB风格的算法,以估计基线上的动作的提升。我们研究了问题的多种变体,包括何时未知基线和受影响的变量,并证明所有这些变量均具有sublrinear后悔界限。我们还提供了较低的界限,以证明我们的建模假设的必要性是合理的。关于合成和现实世界数据集的实验显示了估计不使用这种结构的策略的振奋方法的好处。
translated by 谷歌翻译
出现了前两种算法,作为汤普森采样对多臂匪徒模型中最佳手臂识别的适应(Russo,2016),用于武器的参数家族。他们通过在两个候选臂,一个领导者和一个挑战者中随机化来选择下一个要采样的臂。尽管具有良好的经验表现,但仅当手臂是具有已知差异的高斯时,才能获得固定信心最佳手臂识别的理论保证。在本文中,我们提供了对两种方法的一般分析,该方法确定了领导者,挑战者和武器(可能是非参数)分布的理想特性。结果,我们获得了理论上支持的前两种算法,用于具有有限分布的最佳臂识别。我们的证明方法特别证明了用于选择从汤普森采样继承的领导者的采样步骤可以用其他选择代替,例如选择经验最佳的臂。
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
我们在固定的误差率$ \ delta $(固定信道TOP-M识别)下最大的手段识别M武器的问题,用于错过的线性匪盗模型。这个问题是由实际应用的动机,特别是在医学和推荐系统中,由于它们的简单性和有效算法的存在,线性模型很受欢迎,但是数据不可避免地偏离线性。在这项工作中,我们首先在普通Top-M识别问题的任何$ \ delta $ -correct算法的样本复杂性上得出了一个易行的下限。我们表明,知道从线性度偏差的偏差是利用问题的结构所必需的。然后,我们描述了该设置的第一个算法,这既实际,也适应了误操作。我们从其样本复杂度推出了一个上限,证实了这种适应性,与$ \ delta $ $ \ lightarrow $ 0匹配。最后,我们在合成和现实世界数据上评估了我们的算法,表现出尊重的竞争性能到现有的基准。
translated by 谷歌翻译
我们考虑使用$ K $臂的随机匪徒问题,每一个都与$ [m,m] $范围内支持的有限分布相关。我们不认为$ [m,m] $是已知的范围,并表明学习此范围有成本。确实,出现了与分销相关和无分配后悔界限之间的新权衡,这阻止了同时实现典型的$ \ ln t $和$ \ sqrt {t} $ bunds。例如,仅当与分布相关的遗憾界限至少属于$ \ sqrt {t} $的顺序时,才能实现$ \ sqrt {t} $}无分布遗憾。我们展示了一项策略,以实现新的权衡表明的遗憾。
translated by 谷歌翻译
本文介绍了信息性多臂强盗(IMAB)模型,在每个回合中,玩家选择手臂,观察符号,并以符号的自我信息形式获得未观察到的奖励。因此,手臂的预期奖励是产生其符号的源质量函数的香农熵。玩家的目标是最大程度地提高与武器的熵值相关的预期奖励。在假设字母大小是已知的假设下,为IMAB模型提出了两种基于UCB的算法,该算法考虑了插件熵估计器的偏差。第一种算法在熵估计中乐观地纠正了偏置项。第二算法依赖于数据依赖性置信区间,该置信区间适应具有较小熵值的源。性能保证是通过上限为每种算法的预期遗憾提供的。此外,在Bernoulli案例中,将这些算法的渐近行为与伪遗憾的Lai-Robbins的下限进行了比较。此外,在假设\ textit {cract}字母大小的假设下是未知的,而播放器仅知道其上方的宽度上限,提出了一种基于UCB的算法,在其中,玩家的目的是减少由该算法造成的遗憾。未知的字母尺寸在有限的时间方面。数字结果说明了论文中介绍的算法的预期遗憾。
translated by 谷歌翻译
在古典语境匪徒问题中,在每轮$ t $,学习者观察一些上下文$ c $,选择一些动作$ i $执行,并收到一些奖励$ r_ {i,t}(c)$。我们考虑此问题的变体除了接收奖励$ r_ {i,t}(c)$之外,学习者还要学习其他一些上下文$的$ r_ {i,t}(c')$的值C'$ in设置$ \ mathcal {o} _i(c)$;即,通过在不同的上下文下执行该行动来实现的奖励\ mathcal {o} _i(c)$。这种变体出现在若干战略设置中,例如学习如何在非真实的重复拍卖中出价,最热衷于随着许多平台转换为运行的第一价格拍卖。我们将此问题称为交叉学习的上下文匪徒问题。古典上下围匪徒问题的最佳算法达到$ \ tilde {o}(\ sqrt {ckt})$遗憾针对所有固定策略,其中$ c $是上下文的数量,$ k $的行动数量和$ $次数。我们设计并分析了交叉学习的上下文匪徒问题的新算法,并表明他们的遗憾更好地依赖上下文的数量。在选择动作时学习所有上下文的奖励的完整交叉学习下,即设置$ \ mathcal {o} _i(c)$包含所有上下文,我们显示我们的算法实现后悔$ \ tilde {o}( \ sqrt {kt})$,删除$ c $的依赖。对于任何其他情况,即在部分交叉学习下,$ | \ mathcal {o} _i(c)| <c $ for $(i,c)$,遗憾界限取决于如何设置$ \ mathcal o_i(c)$影响上下文之间的交叉学习的程度。我们从Ad Exchange运行一流拍卖的广告交换中模拟了我们的真实拍卖数据的算法,并表明了它们优于传统的上下文强盗算法。
translated by 谷歌翻译
我们考虑$ k $武装的随机土匪,并考虑到$ t $ t $的累积后悔界限。我们对同时获得最佳订单$ \ sqrt {kt} $的策略感兴趣,并与发行依赖的遗憾相关,即与$ \ kappa \ ln t $相匹配,该遗憾是最佳的。和Robbins(1985)以及Burnetas和Katehakis(1996),其中$ \ kappa $是最佳问题依赖性常数。这个常数的$ \ kappa $取决于所考虑的模型$ \ Mathcal {d} $(武器上可能的分布家族)。 M \'Enard and Garivier(2017)提供了在一维指数式家庭给出的模型的参数案例中实现这种双重偏见的策略,而Lattimore(2016,2018)为(Sub)高斯分布的家族而做到了这一点。差异小于$ 1 $。我们将此结果扩展到超过$ [0,1] $的所有分布的非参数案例。我们通过结合Audibert和Bubeck(2009)的MOSS策略来做到这一点,该策略享受了最佳订单$ \ sqrt {kt} $的无分配遗憾,以及Capp \'e等人的KL-UCB策略。 (2013年),我们为此提供了对最佳分布$ \ kappa \ ln t $遗憾的首次分析。我们能够在努力简化证明(以前已知的遗憾界限,因此进行的新分析)时,能够获得这种非参数两次审查结果;因此,本贡献的第二个优点是为基于$ k $武装的随机土匪提供基于索引的策略的经典后悔界限的证明。
translated by 谷歌翻译
在线学习通常需要探索以最大程度地提高长期奖励,但这是以短期“遗憾”为代价的。我们研究如何在多个小组之间分担这种探索成本。例如,在临床试验环境中,分配了亚最佳治疗的患者有效地产生了勘探成本。当患者根据种族或年龄与自然群体相关联时,自然要问任何单一群体所承担的探索成本是否“公平”。如此有动力,我们介绍了“分组”的强盗模型。我们利用公理讨价还价的理论,尤其是纳什议价解决方案,以形式化可能构成跨群体勘探成本的公平分裂的方式。一方面,我们表明,任何遗憾的政策都引起了最不公平的结果:此类政策将在可能的情况下传递最“处于弱势”的群体。更具建设性的方式,我们得出了最佳公平且同时享受“公平价格”的政策。我们通过对华法林剂量的上下文匪徒进行案例研究来说明我们的算法框架的相对优点,我们关注多个种族和年龄段的探索成本。
translated by 谷歌翻译
在臂分布的标准假设下广泛研究了随机多臂强盗问题(例如,用已知的支持,指数家庭等)。这些假设适用于许多现实世界问题,但有时他们需要知识(例如,在尾部上),从业者可能无法精确访问,提高强盗算法的鲁棒性的问题,以模拟拼盘。在本文中,我们研究了一种通用的Dirichlet采样(DS)算法,基于通过重新采样的武器观测和数​​据相关的探索奖励计算的经验指标的成对比较。我们表明,当该策略的界限和对数后悔具有轻度分量度条件的半界分布时,这种策略的不同变体达到了可证明的最佳遗憾。我们还表明,一项简单的调整在大类无界分布方面实现了坚固性,其成本比对数渐近的遗憾略差。我们终于提供了数字实验,展示了合成农业数据的决策问题中DS的优点。
translated by 谷歌翻译
双重拍卖可以使货物在多个买卖双方之间进行分散化转移,从而支持许多在线市场的运作。买卖双方通过竞标在这些市场上竞争,但经常不知道自己的估值A-Priori。随着分配和定价通过出价进行,​​参与者的盈利能力,因此这些市场的可持续性取决于通过重复互动的各自学习估值的至关重要。我们启动对购买者和卖家方强盗反馈的双重拍卖市场的研究。我们以基于信心的基于信心的招标来展示,“平均定价”参与者之间有有效的价格发现。特别是,交换商品的买卖双方在$ t $ rounds中遗憾的是$ o(\ sqrt {t})$。不从交易所中受益的买家和卖家又只经历$ o(\ log {t}/ \ delta)$后悔的$ t $ rounds,其中$ \ delta $是最低价格差距。我们通过证明良好的固定价格(一个比双重拍卖更简单的学习问题)来增强我们的上限 - $ \ omega(\ sqrt {t})$遗憾在某些市场中是无法实现的。
translated by 谷歌翻译
富达匪徒问题是$ k $的武器问题的变体,其中每个臂的奖励通过提供额外收益的富达奖励来增强,这取决于播放器如何对该臂进行“忠诚”在过去。我们提出了两种忠诚的模型。在忠诚点模型中,额外奖励的数量取决于手臂之前播放的次数。在订阅模型中,额外的奖励取决于手臂的连续绘制的当前数量。我们考虑随机和对抗问题。由于单臂策略在随机问题中并不总是最佳,因此对抗性环境中遗憾的概念需要仔细调整。我们介绍了三个可能的遗憾和调查,这可以是偏执的偏执。我们详细介绍了增加,减少和优惠券的特殊情况(玩家在手臂的每辆M $播放后获得额外的奖励)保真奖励。对于不一定享受载体遗憾的模型,我们提供了最糟糕的下限。对于那些展示Sublinear遗憾的模型,我们提供算法并绑定他们的遗憾。
translated by 谷歌翻译
统计中的一个经典问题是对样品对随机变量的预期估计。这引起了导出浓度不平等和置信序列的紧密联系的问题,即随着时间的推移均匀保持的置信区间。Jun和Orabona [Colt'19]已经展示了如何轻松将在线投注算法的遗憾保证转化为时均匀的集中度不平等。在本文中,我们表明我们可以进一步发展:我们表明,普遍投资组合算法的遗憾引起了新的隐式时间均匀浓度和最先进的经验计算出的置信序列。特别是,即使使用单个样本,我们的数值获得的置信序列也永远不会空置,并满足迭代对数定律。
translated by 谷歌翻译
我们研究了生存的匪徒问题,这是Perotto等人在开放问题中引入的多臂匪徒问题的变体。(2019年),对累积奖励有限制;在每个时间步骤中,代理都会获得(可能为负)奖励,如果累积奖励变得低于预先指定的阈值,则该过程停止,并且这种现象称为废墟。这是研究可能发生毁灭但并非总是如此的框架的第一篇论文。我们首先讨论,在对遗憾的天真定义下,统一的遗憾是无法实现的。接下来,我们就废墟的可能性(以及匹配的策略)提供紧密的下限。基于此下限,我们将生存后悔定义为最小化和提供统一生存后悔的政策的目标(至少在整体奖励的情况下),当时Time Horizon $ t $是已知的。
translated by 谷歌翻译
我们提出了置信度序列 - 置信区间序列,其均匀地随时间均匀 - 用于基于I.I.D的流的完整,完全有序集中的任何分布的量级。观察。我们提供用于跟踪固定定量的方法并同时跟踪所有定量。具体而言,我们提供具有小常数的明确表达式,其宽度以尽可能快的$ \ SQRT {t} \ log \ log t} $率,以及实证分布函数的非渐近浓度不等式以相同的速率均匀地持续持续。后者加强了Smirnov迭代对数的实证过程法,延长了DVORETZKY-KIEFER-WOLFOITZ不等式以均匀地保持一段时间。我们提供了一种新的算法和样本复杂性,用于在多武装强盗框架中选择具有大约最佳定量的臂。在仿真中,我们的方法需要比现有方法更少五到五十的样品。
translated by 谷歌翻译
我们研究了在高维稀疏线性上下文匪徒中动态批处理学习的问题,在给定的最大批量约束下,决策者在每个批次结束时只能观察奖励,可以动态地决定如何进行奖励。许多人将包括在下一批中(在当前批次结束时)以及每批采用哪些个性化行动选择方案。在各种实际情况下,这种批处理的限制无处不在,包括在临床试验中的营销和医疗选择中的个性化产品。我们通过后悔的下限表征了此问题中的基本学习限制,并提供了匹配的上限(直至日志因素),从而为此问题开了最佳方案。据我们所知,我们的工作为在高维稀疏线性上下文匪徒中对动态批处理学习的理论理解提供了第一个侵入。值得注意的是,即使我们的结果的一种特殊情况 - 当不存在批处理约束时 - 都会产生简单的无探索算法使用Lasso估算器,已经达到了在高维线性匪板中为标准在线学习的最小值最佳遗憾(对于No-Cargin情况),在高维上下文Bandits的新兴文献中似乎未知。
translated by 谷歌翻译
在本文中,我们调查了如何在重复的上下文首次价格拍卖中出价的问题。我们考虑一个投标人(学习者)在第一个价格拍卖中反复出价:每次$ t $,学习者都会观察上下文$ x_t \ in \ mathbb {r} ^ d $,并根据历史信息决定出价$ x_t $。我们假设所有其他人的最大出价的结构化线性模型$ m_t = \ alpha_0 \ cdot x_t + z_t $,其中$ \ alpha_0 \ in \ mathbb {r} ^ d $对学习者未知,$ z_t $随机地从噪声分布$ \ mathcal {f} $上采样,使用log-tym-tangave密度函数$ f $。我们考虑\ emph {二进制反馈}(学习者只能观察她是否赢)和\ emph {完全信息反馈}(学习者可以在每次$ t $的末尾观察$ m_t $)。对于二进制反馈,当噪声分布$ \ mathcal {f} $时,我们提出了一种竞标算法,通过使用最大似然估计(MLE)方法来实现至多$ \ widetilde {o}(\ sqrt {\ log( d)t})$后悔。此外,我们将该算法概括为具有二进制反馈的设置,并且噪声分布未知,但属于参数化分布。对于具有\ EMPH {Unknown}噪声分布的完整信息反馈,我们提供了一种算法,它在大多数$ \ widetilde {o}(\ sqrt {dt})$上实现后悔。我们的方法将估计器组合了对数凹入密度函数,然后将MLE方法同时学习噪声分布$ \ mathcal {f} $和线性重量$ \ alpha_0 $。我们还提供了一个下限的结果,使得广泛课堂上的任何竞标政策必须至少为\ omega(\ sqrt {t})$而遗憾,即使学习者收到完整信息反馈和$ \ mathcal {f} $已知。
translated by 谷歌翻译