出现了前两种算法,作为汤普森采样对多臂匪徒模型中最佳手臂识别的适应(Russo,2016),用于武器的参数家族。他们通过在两个候选臂,一个领导者和一个挑战者中随机化来选择下一个要采样的臂。尽管具有良好的经验表现,但仅当手臂是具有已知差异的高斯时,才能获得固定信心最佳手臂识别的理论保证。在本文中,我们提供了对两种方法的一般分析,该方法确定了领导者,挑战者和武器(可能是非参数)分布的理想特性。结果,我们获得了理论上支持的前两种算法,用于具有有限分布的最佳臂识别。我们的证明方法特别证明了用于选择从汤普森采样继承的领导者的采样步骤可以用其他选择代替,例如选择经验最佳的臂。
translated by 谷歌翻译
在臂分布的标准假设下广泛研究了随机多臂强盗问题(例如,用已知的支持,指数家庭等)。这些假设适用于许多现实世界问题,但有时他们需要知识(例如,在尾部上),从业者可能无法精确访问,提高强盗算法的鲁棒性的问题,以模拟拼盘。在本文中,我们研究了一种通用的Dirichlet采样(DS)算法,基于通过重新采样的武器观测和数​​据相关的探索奖励计算的经验指标的成对比较。我们表明,当该策略的界限和对数后悔具有轻度分量度条件的半界分布时,这种策略的不同变体达到了可证明的最佳遗憾。我们还表明,一项简单的调整在大类无界分布方面实现了坚固性,其成本比对数渐近的遗憾略差。我们终于提供了数字实验,展示了合成农业数据的决策问题中DS的优点。
translated by 谷歌翻译
在纯探索问题中,依次收集信息以回答关于随机环境的问题。虽然近年来对线性匪徒的最佳武器识别进行了广泛的研究,但很少有作品专门用于识别一只手臂,即$ \ varepsilon $ close close close to to to to to to n of the $ \ varepsilon $ close(也不是最好的一只)。在这个有几个正确答案的问题中,识别算法应重点放在这些答案之间的一个候选人上,并验证其正确。我们证明,以最高平均值选择答案不允许算法就预期的样本复杂性达到渐近最优性。相反,应识别\ textit {最远的答案}。使用该洞察力仔细选择候选人答案,我们开发了一个简单的过程,以适应最佳臂识别算法,以应对托管线性随机匪徒中的$ \ varepsilon $ best-best-andwer识别。最后,我们为此设置提出了一种渐近最佳算法,该算法证明可以针对现有的改良最佳臂识别算法实现竞争性的经验性能。
translated by 谷歌翻译
本文研究了固定置信度设置中随机多臂匪徒中最佳的手臂识别(BAI)问题。考虑到指数匪徒的一般类。指数匪徒家族的最先进算法面临计算挑战。为了缓解这些挑战,提出了一个新颖的框架,该框架将BAI问题视为顺序假设测试,并且可以适合针对指数的土匪家族的可拖动分析。基于此框架,设计了BAI算法,以利用规范顺序概率比测试。该算法在两种设置中都具有三个功能:(1)其样本复杂性在渐近上是最佳的,(2)保证它是$ \ delta- $ pac,(3)它解决了最先进的计算挑战 - 艺术方法。具体而言,这些方法仅专注于高斯环境,需要从汤普森(Thompson)的手臂上进行采样,而这些方法被认为是最好的和挑战者的手臂。本文分析表明,识别挑战者在计算上是昂贵的,并且提出的算法对其进行了规定。最后,提供了数值实验来支持分析。
translated by 谷歌翻译
本文提出了新的偏差不等式,其在多武装强盗模型中的自适应采样下均匀地均匀。使用给定的一维指数家庭中的kullback-leibler发散来测量偏差,并且可以一次考虑几个臂。它们是通过基于分层的每个臂鞅构造而构建的,并通过将那些鞅乘以来获得。我们的偏差不平等允许我们根据广义概率比来分析一大类连续识别问题的概要概率比,并且为臂的装置的某些功能构造紧密的置信区间。
translated by 谷歌翻译
我们在随机匪徒上使用时(协变量)信息时,我们研究了固定信道的最佳武器识别问题。虽然我们可以在每轮中使用上下文信息,但我们对在语境分布上的边缘化平均奖励感兴趣。我们的目标是在给定值的错误率下识别最少数量的采样。我们显示出问题的特定实例的示例复杂性下限。然后,我们提出了一个“跟踪和停止”策略的上下文知识版本,其中ARM的比例绘制追踪一组最佳分配,并证明预期的ARM绘制数与渐近的下限匹配。我们证明,与Garivier&Kaufmann(2016)的结果相比,可以使用上下文信息来提高最佳边缘化平均奖励的效率。我们通过实验证实了上下文信息有助于更快的最佳武器识别。
translated by 谷歌翻译
我们考虑$ k $武装的随机土匪,并考虑到$ t $ t $的累积后悔界限。我们对同时获得最佳订单$ \ sqrt {kt} $的策略感兴趣,并与发行依赖的遗憾相关,即与$ \ kappa \ ln t $相匹配,该遗憾是最佳的。和Robbins(1985)以及Burnetas和Katehakis(1996),其中$ \ kappa $是最佳问题依赖性常数。这个常数的$ \ kappa $取决于所考虑的模型$ \ Mathcal {d} $(武器上可能的分布家族)。 M \'Enard and Garivier(2017)提供了在一维指数式家庭给出的模型的参数案例中实现这种双重偏见的策略,而Lattimore(2016,2018)为(Sub)高斯分布的家族而做到了这一点。差异小于$ 1 $。我们将此结果扩展到超过$ [0,1] $的所有分布的非参数案例。我们通过结合Audibert和Bubeck(2009)的MOSS策略来做到这一点,该策略享受了最佳订单$ \ sqrt {kt} $的无分配遗憾,以及Capp \'e等人的KL-UCB策略。 (2013年),我们为此提供了对最佳分布$ \ kappa \ ln t $遗憾的首次分析。我们能够在努力简化证明(以前已知的遗憾界限,因此进行的新分析)时,能够获得这种非参数两次审查结果;因此,本贡献的第二个优点是为基于$ k $武装的随机土匪提供基于索引的策略的经典后悔界限的证明。
translated by 谷歌翻译
本文统一了设计,简化了风险厌恶汤普森采样算法的分析,为多武装爆炸问题的常规风险功能为$ \ rho $。在大偏差理论中使用收缩原理,我们证明了这些连续风险功能的新型浓度界限。与现有的作品相比,所界限取决于样本本身,我们的范围仅取决于样本的数量。这使我们能够以追求的分析挑战,并统一现有汤普森采样的算法的遗憾范围。我们展示了广泛的风险功能以及它们的“漂亮”功能满足连续性条件。使用我们新开发的分析工具包,我们分析了算法$ \ rho $ -mts(对于多项式发行版)和$ \ rho $ -npts(对于有界分布),并证明他们承认渐近最佳的风险厌恶算法的最佳遗憾平均方差,CVAR等普遍存在风险措施,以及一系列新综合的风险措施。数值模拟表明,我们的界限是相当严格的VIS-\“A-VIS算法无关的下限。
translated by 谷歌翻译
我们在随机多臂匪徒问题中使用固定预算和上下文(协变)信息研究最佳武器识别。在观察上下文信息之后,在每一轮中,我们使用过去的观察和当前上下文选择一个治疗臂。我们的目标是确定最好的治疗组,这是一个在上下文分布中被边缘化的最大预期奖励的治疗组,而错误识别的可能性最小。首先,我们为此问题得出半参数的下限,在这里我们将最佳和次优的治疗臂的预期奖励之间的差距视为感兴趣的参数,以及所有其他参数,例如在上下文中的预期奖励,作为滋扰参数。然后,我们开发“上下文RS-AIPW策略”,该策略由随机采样(RS)规则组成,跟踪目标分配比和使用增强反向概率加权(AIPW)估算器的建议规则。我们提出的上下文RS-AIPW策略是最佳的,因为错误识别概率的上限与预算到Infinity时的半参数下限相匹配,并且差距趋于零。
translated by 谷歌翻译
我们在固定的误差率$ \ delta $(固定信道TOP-M识别)下最大的手段识别M武器的问题,用于错过的线性匪盗模型。这个问题是由实际应用的动机,特别是在医学和推荐系统中,由于它们的简单性和有效算法的存在,线性模型很受欢迎,但是数据不可避免地偏离线性。在这项工作中,我们首先在普通Top-M识别问题的任何$ \ delta $ -correct算法的样本复杂性上得出了一个易行的下限。我们表明,知道从线性度偏差的偏差是利用问题的结构所必需的。然后,我们描述了该设置的第一个算法,这既实际,也适应了误操作。我们从其样本复杂度推出了一个上限,证实了这种适应性,与$ \ delta $ $ \ lightarrow $ 0匹配。最后,我们在合成和现实世界数据上评估了我们的算法,表现出尊重的竞争性能到现有的基准。
translated by 谷歌翻译
We investigate the sample complexity of learning the optimal arm for multi-task bandit problems. Arms consist of two components: one that is shared across tasks (that we call representation) and one that is task-specific (that we call predictor). The objective is to learn the optimal (representation, predictor)-pair for each task, under the assumption that the optimal representation is common to all tasks. Within this framework, efficient learning algorithms should transfer knowledge across tasks. We consider the best-arm identification problem for a fixed confidence, where, in each round, the learner actively selects both a task, and an arm, and observes the corresponding reward. We derive instance-specific sample complexity lower bounds satisfied by any $(\delta_G,\delta_H)$-PAC algorithm (such an algorithm identifies the best representation with probability at least $1-\delta_G$, and the best predictor for a task with probability at least $1-\delta_H$). We devise an algorithm OSRL-SC whose sample complexity approaches the lower bound, and scales at most as $H(G\log(1/\delta_G)+ X\log(1/\delta_H))$, with $X,G,H$ being, respectively, the number of tasks, representations and predictors. By comparison, this scaling is significantly better than the classical best-arm identification algorithm that scales as $HGX\log(1/\delta)$.
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
关于强盗算法最佳设计的许多文献都是基于最小化预期遗憾的基础。众所周知,在某些指数家庭中最佳的设计可以实现预期的遗憾,即以LAI-ROBBINS下降的速度在ARM游戏数量上进行对数增长。在本文中,我们表明,当人们使用这种优化的设计时,相关算法的遗憾分布必然具有非常沉重的尾巴,特别是cauchy分布的尾巴。此外,对于$ p> 1 $,遗憾分布的$ p $'瞬间增长速度要比多层型的速度快得多,尤其是作为ARM播放总数的力量。我们表明,优化的UCB强盗设计在另一种意义上也是脆弱的,即,当问题甚至略有指定时,遗憾的增长可能比传统理论所建议的要快得多。我们的论点是基于标准的量化想法,并表明最有可能的遗憾变得比预期的要大的方法是最佳手臂在前几只手臂比赛中返回低于平均水平的奖励,从而导致算法相信这一点手臂是最佳的。为了减轻暴露的脆弱性问题,我们表明可以修改UCB算法,以确保对错误指定的理想程度。在此过程中,我们还提供了UCB勘探数量与产生后悔分布的尾声之间的巨大权衡。
translated by 谷歌翻译
我们考虑使用$ K $臂的随机匪徒问题,每一个都与$ [m,m] $范围内支持的有限分布相关。我们不认为$ [m,m] $是已知的范围,并表明学习此范围有成本。确实,出现了与分销相关和无分配后悔界限之间的新权衡,这阻止了同时实现典型的$ \ ln t $和$ \ sqrt {t} $ bunds。例如,仅当与分布相关的遗憾界限至少属于$ \ sqrt {t} $的顺序时,才能实现$ \ sqrt {t} $}无分布遗憾。我们展示了一项策略,以实现新的权衡表明的遗憾。
translated by 谷歌翻译
我们考虑使用未知差异的双臂高斯匪徒的固定预算最佳臂识别问题。当差异未知时,性能保证与下限的性能保证匹配的算法最紧密的下限和算法的算法很长。当算法不可知到ARM的最佳比例算法。在本文中,我们提出了一种策略,该策略包括在估计的ARM绘制的目标分配概率之后具有随机采样(RS)的采样规则,并且使用增强的反概率加权(AIPW)估计器通常用于因果推断文学。我们将我们的战略称为RS-AIPW战略。在理论分析中,我们首先推导出鞅的大偏差原理,当第二次孵化的均值时,可以使用,并将其应用于我们提出的策略。然后,我们表明,拟议的策略在错误识别的可能性达到了Kaufmann等人的意义上是渐近最佳的。 (2016)当样品尺寸无限大而双臂之间的间隙变为零。
translated by 谷歌翻译
在负面的感知问题中,我们给出了$ n $数据点$({\ boldsymbol x} _i,y_i)$,其中$ {\ boldsymbol x} _i $是$ d $ -densional vector和$ y_i \ in \ { + 1,-1 \} $是二进制标签。数据不是线性可分离的,因此我们满足自己的内容,以找到最大的线性分类器,具有最大的\ emph {否定}余量。换句话说,我们想找到一个单位常规矢量$ {\ boldsymbol \ theta} $,最大化$ \ min_ {i \ le n} y_i \ langle {\ boldsymbol \ theta},{\ boldsymbol x} _i \ rangle $ 。这是一个非凸优化问题(它相当于在Polytope中找到最大标准矢量),我们在两个随机模型下研究其典型属性。我们考虑比例渐近,其中$ n,d \ to \ idty $以$ n / d \ to \ delta $,并在最大边缘$ \ kappa _ {\ text {s}}(\ delta)上证明了上限和下限)$或 - 等效 - 在其逆函数$ \ delta _ {\ text {s}}(\ kappa)$。换句话说,$ \ delta _ {\ text {s}}(\ kappa)$是overparametization阈值:以$ n / d \ le \ delta _ {\ text {s}}(\ kappa) - \ varepsilon $一个分类器实现了消失的训练错误,具有高概率,而以$ n / d \ ge \ delta _ {\ text {s}}(\ kappa)+ \ varepsilon $。我们在$ \ delta _ {\ text {s}}(\ kappa)$匹配,以$ \ kappa \ to - \ idty $匹配。然后,我们分析了线性编程算法来查找解决方案,并表征相应的阈值$ \ delta _ {\ text {lin}}(\ kappa)$。我们观察插值阈值$ \ delta _ {\ text {s}}(\ kappa)$和线性编程阈值$ \ delta _ {\ text {lin {lin}}(\ kappa)$之间的差距,提出了行为的问题其他算法。
translated by 谷歌翻译
我们提出了置信度序列 - 置信区间序列,其均匀地随时间均匀 - 用于基于I.I.D的流的完整,完全有序集中的任何分布的量级。观察。我们提供用于跟踪固定定量的方法并同时跟踪所有定量。具体而言,我们提供具有小常数的明确表达式,其宽度以尽可能快的$ \ SQRT {t} \ log \ log t} $率,以及实证分布函数的非渐近浓度不等式以相同的速率均匀地持续持续。后者加强了Smirnov迭代对数的实证过程法,延长了DVORETZKY-KIEFER-WOLFOITZ不等式以均匀地保持一段时间。我们提供了一种新的算法和样本复杂性,用于在多武装强盗框架中选择具有大约最佳定量的臂。在仿真中,我们的方法需要比现有方法更少五到五十的样品。
translated by 谷歌翻译
我们考虑激励探索:一种多臂匪徒的版本,其中武器的选择由自私者控制,而算法只能发布建议。该算法控制信息流,信息不对称可以激励代理探索。先前的工作达到了最佳的遗憾率,直到乘法因素,这些因素根据贝叶斯先验而变得很大,并在武器数量上成倍规模扩展。采样每只手臂的一个更基本的问题一旦遇到了类似的因素。我们专注于激励措施的价格:出于激励兼容的目的,绩效的损失,广泛解释为。我们证明,如果用足够多的数据点初始化,则标准的匪徒汤普森采样是激励兼容的。因此,当收集这些数据点时,由于激励措施的绩效损失仅限于初始回合。这个问题主要降低到样本复杂性的问题:需要多少个回合?我们解决了这个问题,提供了匹配的上限和下限,并在各种推论中实例化。通常,最佳样品复杂性在“信念强度”中的武器数量和指数中是多项式。
translated by 谷歌翻译
当在未知约束集中任意变化的分布中生成数据时,我们会考虑使用专家建议的预测。这种半反向的设置包括(在极端)经典的I.I.D.设置时,当未知约束集限制为单身人士时,当约束集是所有分布的集合时,不受约束的对抗设置。对冲状态中,对冲算法(长期以来已知是最佳的最佳速率(速率))最近被证明是对I.I.D.的最佳最小值。数据。在这项工作中,我们建议放松I.I.D.通过在约束集的所有自然顺序上寻求适应性来假设。我们在各个级别的Minimax遗憾中提供匹配的上限和下限,表明确定性学习率的对冲在极端之外是次优的,并证明人们可以在各个级别的各个层面上都能适应Minimax的遗憾。我们使用以下规范化领导者(FTRL)框架实现了这种最佳适应性,并采用了一种新型的自适应正则化方案,该方案隐含地缩放为当前预测分布的熵的平方根,而不是初始预测分布的熵。最后,我们提供了新的技术工具来研究FTRL沿半逆转频谱的统计性能。
translated by 谷歌翻译
我们研究汤普森采样(TS)算法的遗憾,指数为家庭土匪,其中奖励分配来自一个一维指数式家庭,该家庭涵盖了许多常见的奖励分布,包括伯努利,高斯,伽玛,伽玛,指数等。我们建议汤普森采样算法,称为expts,它使用新颖的采样分布来避免估计最佳臂。我们为expts提供了严格的遗憾分析,同时产生有限的遗憾和渐近遗憾。特别是,对于带指数级家庭奖励的$ k $臂匪徒,expts of horizo​​n $ t $ sub-ucb(对于有限的时间遗憾的是问题依赖的有限时间标准) $ \ sqrt {\ log k} $,并且对于指数家庭奖励,渐近最佳。此外,我们通过在Expts中使用的采样分配外添加一个贪婪的剥削步骤,提出$^+$,以避免过度估计亚最佳武器。 expts $^+$是随时随地的强盗算法,可用于指数级的家庭奖励分布同时实现最小值和渐近最优性。我们的证明技术在概念上很简单,可以轻松地应用于用特定奖励分布分析标准的汤普森抽样。
translated by 谷歌翻译