我们在随机多臂匪徒问题中使用固定预算和上下文(协变)信息研究最佳武器识别。在观察上下文信息之后,在每一轮中,我们使用过去的观察和当前上下文选择一个治疗臂。我们的目标是确定最好的治疗组,这是一个在上下文分布中被边缘化的最大预期奖励的治疗组,而错误识别的可能性最小。首先,我们为此问题得出半参数的下限,在这里我们将最佳和次优的治疗臂的预期奖励之间的差距视为感兴趣的参数,以及所有其他参数,例如在上下文中的预期奖励,作为滋扰参数。然后,我们开发“上下文RS-AIPW策略”,该策略由随机采样(RS)规则组成,跟踪目标分配比和使用增强反向概率加权(AIPW)估算器的建议规则。我们提出的上下文RS-AIPW策略是最佳的,因为错误识别概率的上限与预算到Infinity时的半参数下限相匹配,并且差距趋于零。
translated by 谷歌翻译
我们考虑使用未知差异的双臂高斯匪徒的固定预算最佳臂识别问题。当差异未知时,性能保证与下限的性能保证匹配的算法最紧密的下限和算法的算法很长。当算法不可知到ARM的最佳比例算法。在本文中,我们提出了一种策略,该策略包括在估计的ARM绘制的目标分配概率之后具有随机采样(RS)的采样规则,并且使用增强的反概率加权(AIPW)估计器通常用于因果推断文学。我们将我们的战略称为RS-AIPW战略。在理论分析中,我们首先推导出鞅的大偏差原理,当第二次孵化的均值时,可以使用,并将其应用于我们提出的策略。然后,我们表明,拟议的策略在错误识别的可能性达到了Kaufmann等人的意义上是渐近最佳的。 (2016)当样品尺寸无限大而双臂之间的间隙变为零。
translated by 谷歌翻译
我们在随机匪徒上使用时(协变量)信息时,我们研究了固定信道的最佳武器识别问题。虽然我们可以在每轮中使用上下文信息,但我们对在语境分布上的边缘化平均奖励感兴趣。我们的目标是在给定值的错误率下识别最少数量的采样。我们显示出问题的特定实例的示例复杂性下限。然后,我们提出了一个“跟踪和停止”策略的上下文知识版本,其中ARM的比例绘制追踪一组最佳分配,并证明预期的ARM绘制数与渐近的下限匹配。我们证明,与Garivier&Kaufmann(2016)的结果相比,可以使用上下文信息来提高最佳边缘化平均奖励的效率。我们通过实验证实了上下文信息有助于更快的最佳武器识别。
translated by 谷歌翻译
出现了前两种算法,作为汤普森采样对多臂匪徒模型中最佳手臂识别的适应(Russo,2016),用于武器的参数家族。他们通过在两个候选臂,一个领导者和一个挑战者中随机化来选择下一个要采样的臂。尽管具有良好的经验表现,但仅当手臂是具有已知差异的高斯时,才能获得固定信心最佳手臂识别的理论保证。在本文中,我们提供了对两种方法的一般分析,该方法确定了领导者,挑战者和武器(可能是非参数)分布的理想特性。结果,我们获得了理论上支持的前两种算法,用于具有有限分布的最佳臂识别。我们的证明方法特别证明了用于选择从汤普森采样继承的领导者的采样步骤可以用其他选择代替,例如选择经验最佳的臂。
translated by 谷歌翻译
我们认为“政策选择”问题 - 否则称为强盗文献中的最佳臂识别 - 由Kasy和Sautmann(2021)提出的适应性实验设计。Kasy和Sautmann(2021)的定理提供了三种渐近结果,为该环境开发的探索采样提供了理论担保。首先表明定理1(1)的证明具有技术问题,定理1(2)的证明和声明是不正确的。然后,我们通过一个反例来展示定理1(3)是假的。对于前两者,我们纠正了陈述并提供严格的证据。对于定理1(3),我们提出了一种替代目标函数,我们称之为后加权政策遗憾,并导出勘探采样的渐近最优性。
translated by 谷歌翻译
我们考虑使用正常奖励分布的固定预算最佳武器识别问题。在此问题中,预报员将获得$ K $臂(或治疗)和$ t $时间步骤。预报员试图通过使用算法进行的自适应实验来找到最大的均值,以最大的均值定义。该算法的性能是通过简单的遗憾(即估计的最佳臂的质量)来衡量的。常见的简单遗憾可能是指数级至$ t $的,而贝叶斯简单的遗憾在多项式上很小至$ t $。本文表明,贝叶斯的最佳算法使贝叶斯简单的遗憾最小化,并不会对某些参数产生指数的简单遗憾,这一发现与许多结果形成了鲜明的对比,表明贝叶斯和频繁的算法在固定采样制度的上下文中的渐近等效性。虽然贝叶斯最佳算法是用递归方程式来描述的,而递归方程实际上是不可能准确地计算的,但我们通过引入一个称为预期的Bellman改进的关键数量来建立进一步分析的基础。
translated by 谷歌翻译
This paper studies offline policy learning, which aims at utilizing observations collected a priori (from either fixed or adaptively evolving behavior policies) to learn an optimal individualized decision rule that achieves the best overall outcomes for a given population. Existing policy learning methods rely on a uniform overlap assumption, i.e., the propensities of exploring all actions for all individual characteristics are lower bounded in the offline dataset; put differently, the performance of the existing methods depends on the worst-case propensity in the offline dataset. As one has no control over the data collection process, this assumption can be unrealistic in many situations, especially when the behavior policies are allowed to evolve over time with diminishing propensities for certain actions. In this paper, we propose a new algorithm that optimizes lower confidence bounds (LCBs) -- instead of point estimates -- of the policy values. The LCBs are constructed using knowledge of the behavior policies for collecting the offline data. Without assuming any uniform overlap condition, we establish a data-dependent upper bound for the suboptimality of our algorithm, which only depends on (i) the overlap for the optimal policy, and (ii) the complexity of the policy class we optimize over. As an implication, for adaptively collected data, we ensure efficient policy learning as long as the propensities for optimal actions are lower bounded over time, while those for suboptimal ones are allowed to diminish arbitrarily fast. In our theoretical analysis, we develop a new self-normalized type concentration inequality for inverse-propensity-weighting estimators, generalizing the well-known empirical Bernstein's inequality to unbounded and non-i.i.d. data.
translated by 谷歌翻译
我们考虑固定预算的最佳手臂识别问题,目标是找到具有固定数量样本的最大均值的手臂。众所周知,错误识别最好的手臂的概率对巡回赛的数量成倍小。但是,已经讨论了有关此值的速率(指数)的有限特征。在本文中,我们表征了由于所有可能的参数的全局优化而导致的最佳速率。我们介绍了两个费率,$ r^{\ mathrm {go}} $和$ r^{\ mathrm {go}} _ {\ infty} $,对应于错误识别概率的下限,每种范围都与A建议的算法。费率$ r^{\ mathrm {go}} $与$ r^{\ mathrm {go}} $ - 跟踪相关联,可以通过神经网络有效地实现,并显示出胜过现有的算法。但是,此速率要求可以实现非平凡的条件。为了解决这个问题,我们介绍了第二个速率$ r^{\ mathrm {go}} _ \ infty $。我们表明,通过引入一种称为延迟最佳跟踪(DOT)的概念算法,确实可以实现此速率。
translated by 谷歌翻译
Evaluating the performance of an ongoing policy plays a vital role in many areas such as medicine and economics, to provide crucial instruction on the early-stop of the online experiment and timely feedback from the environment. Policy evaluation in online learning thus attracts increasing attention by inferring the mean outcome of the optimal policy (i.e., the value) in real-time. Yet, such a problem is particularly challenging due to the dependent data generated in the online environment, the unknown optimal policy, and the complex exploration and exploitation trade-off in the adaptive experiment. In this paper, we aim to overcome these difficulties in policy evaluation for online learning. We explicitly derive the probability of exploration that quantifies the probability of exploring the non-optimal actions under commonly used bandit algorithms. We use this probability to conduct valid inference on the online conditional mean estimator under each action and develop the doubly robust interval estimation (DREAM) method to infer the value under the estimated optimal policy in online learning. The proposed value estimator provides double protection on the consistency and is asymptotically normal with a Wald-type confidence interval provided. Extensive simulations and real data applications are conducted to demonstrate the empirical validity of the proposed DREAM method.
translated by 谷歌翻译
在因果推理和强盗文献中,基于观察数据的线性功能估算线性功能的问题是规范的。我们分析了首先估计治疗效果函数的广泛的两阶段程序,然后使用该数量来估计线性功能。我们证明了此类过程的均方误差上的非反应性上限:这些边界表明,为了获得非反应性最佳程序,应在特定加权$ l^2 $中最大程度地估算治疗效果的误差。 -规范。我们根据该加权规范的约束回归分析了两阶段的程序,并通过匹配非轴突局部局部最小值下限,在有限样品中建立了实例依赖性最优性。这些结果表明,除了取决于渐近效率方差之外,最佳的非质子风险除了取决于样本量支持的最富有函数类别的真实结果函数与其近似类别之间的加权规范距离。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
本文研究了固定置信度设置中随机多臂匪徒中最佳的手臂识别(BAI)问题。考虑到指数匪徒的一般类。指数匪徒家族的最先进算法面临计算挑战。为了缓解这些挑战,提出了一个新颖的框架,该框架将BAI问题视为顺序假设测试,并且可以适合针对指数的土匪家族的可拖动分析。基于此框架,设计了BAI算法,以利用规范顺序概率比测试。该算法在两种设置中都具有三个功能:(1)其样本复杂性在渐近上是最佳的,(2)保证它是$ \ delta- $ pac,(3)它解决了最先进的计算挑战 - 艺术方法。具体而言,这些方法仅专注于高斯环境,需要从汤普森(Thompson)的手臂上进行采样,而这些方法被认为是最好的和挑战者的手臂。本文分析表明,识别挑战者在计算上是昂贵的,并且提出的算法对其进行了规定。最后,提供了数值实验来支持分析。
translated by 谷歌翻译
关于强盗算法最佳设计的许多文献都是基于最小化预期遗憾的基础。众所周知,在某些指数家庭中最佳的设计可以实现预期的遗憾,即以LAI-ROBBINS下降的速度在ARM游戏数量上进行对数增长。在本文中,我们表明,当人们使用这种优化的设计时,相关算法的遗憾分布必然具有非常沉重的尾巴,特别是cauchy分布的尾巴。此外,对于$ p> 1 $,遗憾分布的$ p $'瞬间增长速度要比多层型的速度快得多,尤其是作为ARM播放总数的力量。我们表明,优化的UCB强盗设计在另一种意义上也是脆弱的,即,当问题甚至略有指定时,遗憾的增长可能比传统理论所建议的要快得多。我们的论点是基于标准的量化想法,并表明最有可能的遗憾变得比预期的要大的方法是最佳手臂在前几只手臂比赛中返回低于平均水平的奖励,从而导致算法相信这一点手臂是最佳的。为了减轻暴露的脆弱性问题,我们表明可以修改UCB算法,以确保对错误指定的理想程度。在此过程中,我们还提供了UCB勘探数量与产生后悔分布的尾声之间的巨大权衡。
translated by 谷歌翻译
在线学习和决策中的一个核心问题 - 从土匪到强化学习 - 是要了解哪种建模假设会导致样本有效的学习保证。我们考虑了一个普遍的对抗性决策框架,该框架涵盖了(结构化的)匪徒问题,这些问题与对抗性动力学有关。我们的主要结果是通过新的上限和下限显示决策估计系数,这是Foster等人引入的复杂度度量。在与我们环境的随机对应物中,对于对抗性决策而言是必要和足够的遗憾。但是,与随机设置相比,必须将决策估计系数应用于所考虑的模型类(或假设)的凸壳。这就确定了容纳对抗奖励或动态的价格受凸层化模型类的行为的约束,并恢复了许多现有结果 - 既积极又负面。在获得这些保证的途径中,我们提供了新的结构结果,将决策估计系数与其他众所周知的复杂性度量的变体联系起来,包括Russo和Van Roy的信息比以及Lattimore和Gy的探索目标\“ {o} rgy。
translated by 谷歌翻译
我们考虑使用$ K $臂的随机匪徒问题,每一个都与$ [m,m] $范围内支持的有限分布相关。我们不认为$ [m,m] $是已知的范围,并表明学习此范围有成本。确实,出现了与分销相关和无分配后悔界限之间的新权衡,这阻止了同时实现典型的$ \ ln t $和$ \ sqrt {t} $ bunds。例如,仅当与分布相关的遗憾界限至少属于$ \ sqrt {t} $的顺序时,才能实现$ \ sqrt {t} $}无分布遗憾。我们展示了一项策略,以实现新的权衡表明的遗憾。
translated by 谷歌翻译
We investigate the sample complexity of learning the optimal arm for multi-task bandit problems. Arms consist of two components: one that is shared across tasks (that we call representation) and one that is task-specific (that we call predictor). The objective is to learn the optimal (representation, predictor)-pair for each task, under the assumption that the optimal representation is common to all tasks. Within this framework, efficient learning algorithms should transfer knowledge across tasks. We consider the best-arm identification problem for a fixed confidence, where, in each round, the learner actively selects both a task, and an arm, and observes the corresponding reward. We derive instance-specific sample complexity lower bounds satisfied by any $(\delta_G,\delta_H)$-PAC algorithm (such an algorithm identifies the best representation with probability at least $1-\delta_G$, and the best predictor for a task with probability at least $1-\delta_H$). We devise an algorithm OSRL-SC whose sample complexity approaches the lower bound, and scales at most as $H(G\log(1/\delta_G)+ X\log(1/\delta_H))$, with $X,G,H$ being, respectively, the number of tasks, representations and predictors. By comparison, this scaling is significantly better than the classical best-arm identification algorithm that scales as $HGX\log(1/\delta)$.
translated by 谷歌翻译
我们研究汤普森采样(TS)算法的遗憾,指数为家庭土匪,其中奖励分配来自一个一维指数式家庭,该家庭涵盖了许多常见的奖励分布,包括伯努利,高斯,伽玛,伽玛,指数等。我们建议汤普森采样算法,称为expts,它使用新颖的采样分布来避免估计最佳臂。我们为expts提供了严格的遗憾分析,同时产生有限的遗憾和渐近遗憾。特别是,对于带指数级家庭奖励的$ k $臂匪徒,expts of horizo​​n $ t $ sub-ucb(对于有限的时间遗憾的是问题依赖的有限时间标准) $ \ sqrt {\ log k} $,并且对于指数家庭奖励,渐近最佳。此外,我们通过在Expts中使用的采样分配外添加一个贪婪的剥削步骤,提出$^+$,以避免过度估计亚最佳武器。 expts $^+$是随时随地的强盗算法,可用于指数级的家庭奖励分布同时实现最小值和渐近最优性。我们的证明技术在概念上很简单,可以轻松地应用于用特定奖励分布分析标准的汤普森抽样。
translated by 谷歌翻译
我们研究固定预算设置中线性匪徒中最佳手臂识别的问题。通过利用G-Optimal设计的属性并将其纳入ARM分配规则,我们设计了一种无参数算法,基于最佳设计的基于设计的线性最佳臂识别(OD-Linbai)。我们提供了OD-Linbai的失败概率的理论分析。 OD-Linbai的性能并非所有最优差距,而是取决于顶部$ d $臂的差距,其中$ d $是线性匪徒实例的有效维度。补充,我们为此问题提供了一个Minimax下限。上限和下限表明,OD-Linbai是最佳的最佳选择,直到指数中的恒定乘法因素,这是对现有方法的显着改进(例如,贝耶斯加普,和平,线性化和GSE),并解决了确定确定该问题的问题。在固定预算设置中学习最好的手臂的困难。最后,数值实验表明,对各种真实和合成数据集的现有算法进行了相当大的经验改进。
translated by 谷歌翻译
我们考虑在多武装匪徒问题中拜耳最佳武器识别。假设先前的某些连续性条件,我们表征了贝叶斯简单遗憾的速度。与贝叶斯遗憾的不同(Lai,1987),贝叶斯简单遗憾的主要因素来自最佳和次优臂之间的差距小于$ \ sqrt {\ frac {\ log t} {t}}$。我们提出了一种简单且易于计算的算法,其前导因子与下限达到恒定因子;仿真结果支持我们的理论发现。
translated by 谷歌翻译
本文介绍了信息性多臂强盗(IMAB)模型,在每个回合中,玩家选择手臂,观察符号,并以符号的自我信息形式获得未观察到的奖励。因此,手臂的预期奖励是产生其符号的源质量函数的香农熵。玩家的目标是最大程度地提高与武器的熵值相关的预期奖励。在假设字母大小是已知的假设下,为IMAB模型提出了两种基于UCB的算法,该算法考虑了插件熵估计器的偏差。第一种算法在熵估计中乐观地纠正了偏置项。第二算法依赖于数据依赖性置信区间,该置信区间适应具有较小熵值的源。性能保证是通过上限为每种算法的预期遗憾提供的。此外,在Bernoulli案例中,将这些算法的渐近行为与伪遗憾的Lai-Robbins的下限进行了比较。此外,在假设\ textit {cract}字母大小的假设下是未知的,而播放器仅知道其上方的宽度上限,提出了一种基于UCB的算法,在其中,玩家的目的是减少由该算法造成的遗憾。未知的字母尺寸在有限的时间方面。数字结果说明了论文中介绍的算法的预期遗憾。
translated by 谷歌翻译