双重拍卖可以使货物在多个买卖双方之间进行分散化转移,从而支持许多在线市场的运作。买卖双方通过竞标在这些市场上竞争,但经常不知道自己的估值A-Priori。随着分配和定价通过出价进行,​​参与者的盈利能力,因此这些市场的可持续性取决于通过重复互动的各自学习估值的至关重要。我们启动对购买者和卖家方强盗反馈的双重拍卖市场的研究。我们以基于信心的基于信心的招标来展示,“平均定价”参与者之间有有效的价格发现。特别是,交换商品的买卖双方在$ t $ rounds中遗憾的是$ o(\ sqrt {t})$。不从交易所中受益的买家和卖家又只经历$ o(\ log {t}/ \ delta)$后悔的$ t $ rounds,其中$ \ delta $是最低价格差距。我们通过证明良好的固定价格(一个比双重拍卖更简单的学习问题)来增强我们的上限 - $ \ omega(\ sqrt {t})$遗憾在某些市场中是无法实现的。
translated by 谷歌翻译
我们通过审查反馈重复进行一定的第一价格拍卖来研究在线学习,在每次拍卖结束时,出价者只观察获胜的出价,学会了适应性地出价,以最大程度地提高她的累积回报。为了实现这一目标,投标人面临着一个具有挑战性的困境:如果她赢得了竞标 - 获得正收益的唯一方法 - 然后她无法观察其他竞标者的最高竞标,我们认为我们认为这是从中汲取的。一个未知的分布。尽管这一困境让人联想到上下文强盗中的探索探索折衷权,但现有的UCB或汤普森采样算法无法直接解决。在本文中,通过利用第一价格拍卖的结构属性,我们开发了第一个实现$ o(\ sqrt {t} \ log^{2.5} t)$ hearry bund的第一个学习算法(\ sqrt {t} \ log^{2.5} t),这是最小值的最低$ $ \ log $因素,当投标人的私人价值随机生成时。我们这样做是通过在一系列问题上提供算法,称为部分有序的上下文匪徒,该算法将图形反馈跨动作,跨环境跨上下文进行结合,以及在上下文中的部分顺序。我们通过表现出一个奇怪的分离来确定该框架的优势和劣势,即在随机环境下几乎可以独立于动作/背景规模的遗憾,但是在对抗性环境下是不可能的。尽管这一通用框架有限制,但我们进一步利用了第一价格拍卖的结构,并开发了一种学习算法,该算法在存在对手生成的私有价值的情况下,在存在的情况下可以有效地运行样本(并有效地计算)。我们建立了一个$ o(\ sqrt {t} \ log^3 t)$遗憾,以此为此算法,因此提供了对第一价格拍卖的最佳学习保证的完整表征。
translated by 谷歌翻译
一流拍卖基本上基于Vickrey拍卖的基于程序化广告的传统竞标方法。就学习而言,首次拍卖更具挑战性,因为最佳招标策略不仅取决于物品的价值,还需要一些其他出价的知识。他们已经升级了续集学习的几种作品,其中许多人考虑以对抗方式选择买方或对手最大出价的型号。即使在最简单的设置中,这也会导致算法,其后悔在$ \ sqrt {t} $方面与时间纵横为$ t $。专注于买方对静止随机环境扮演的情况,我们展示了如何实现显着较低的遗憾:当对手的最大竞标分布是已知的,我们提供了一种遗留算法,其后悔可以低至$ \ log ^ 2(t )$;在必须顺序地学习分发的情况下,对于任何$ \ epsilon> 0 $来说,该算法的概括可以达到$ t ^ {1/3 + \ epsilon} $。为了获得这些结果,我们介绍了两种可能对自己兴趣感兴趣的新颖思想。首先,通过在发布的价格设置中获得的结果进行输,我们提供了一个条件,其中一流的挡板效用在其最佳状态下局部二次。其次,我们利用观察到,在小子间隔上,可以更准确地控制经验分布函数的变化的浓度,而不是使用经典的DVORETZKY-Kiefer-Wolfowitz不等式来控制。数值模拟确认,我们的算法比各种出价分布中提出的替代方案更快地收敛,包括在实际的程序化广告平台上收集的出价。
translated by 谷歌翻译
由于信息不对称,多智能经纪增强学习(Marl)问题是挑战。为了克服这一挑战,现有方法通常需要代理商之间的高度协调或沟通。我们考虑具有在应用中产生的分层信息结构的两个代理多武装匪徒(MAB)和MARKOV决策过程(MDP),我们利用不需要协调或通信的更简单和更高效的算法。在结构中,在每个步骤中,“领导者”首先选择她的行动,然后“追随者”在观察领导者的行动后,“追随者”决定他的行动。这两个代理观察了相同的奖励(以及MDP设置中的相同状态转换),这取决于其联合行动。对于强盗设置,我们提出了一种分层匪盗算法,实现了$ \ widetilde {\ mathcal {o}}(\ sqrt {abt})$和近最佳差距依赖的近乎最佳的差距遗憾$ \ mathcal {o}(\ log(t))$,其中$ a $和$ b $分别是领导者和追随者的行动数,$ t $是步数。我们进一步延伸到多个追随者的情况,并且具有深层层次结构的情况,在那里我们都获得了近乎最佳的遗憾范围。对于MDP设置,我们获得$ \ widetilde {\ mathcal {o}}(\ sqrt {h ^ 7s ^ 2abt})$后悔,其中$ h $是每集的步骤数,$ s $是数量各国,$ T $是剧集的数量。这与$ a,b $和$ t $的现有下限匹配。
translated by 谷歌翻译
本文介绍了信息性多臂强盗(IMAB)模型,在每个回合中,玩家选择手臂,观察符号,并以符号的自我信息形式获得未观察到的奖励。因此,手臂的预期奖励是产生其符号的源质量函数的香农熵。玩家的目标是最大程度地提高与武器的熵值相关的预期奖励。在假设字母大小是已知的假设下,为IMAB模型提出了两种基于UCB的算法,该算法考虑了插件熵估计器的偏差。第一种算法在熵估计中乐观地纠正了偏置项。第二算法依赖于数据依赖性置信区间,该置信区间适应具有较小熵值的源。性能保证是通过上限为每种算法的预期遗憾提供的。此外,在Bernoulli案例中,将这些算法的渐近行为与伪遗憾的Lai-Robbins的下限进行了比较。此外,在假设\ textit {cract}字母大小的假设下是未知的,而播放器仅知道其上方的宽度上限,提出了一种基于UCB的算法,在其中,玩家的目的是减少由该算法造成的遗憾。未知的字母尺寸在有限的时间方面。数字结果说明了论文中介绍的算法的预期遗憾。
translated by 谷歌翻译
积极的学习方法在减少学习所需的样本数量方面表现出了巨大的希望。随着自动化学习系统被采用到实时的现实世界决策管道中,越来越重要的是,这种算法的设计考虑到了安全性。在这项工作中,我们研究了在互动环境中学习最佳安全决定的复杂性。我们将这个问题减少到约束的线性匪徒问题,我们的目标是找到满足某些(未知)安全限制的最佳手臂。我们提出了一种基于自适应的实验性设计算法,在显示ARM的难度与次优的难度之间,我们表现出了有效的交易。据我们所知,我们的结果是具有安全限制的线性匪徒最佳武器识别。实际上,我们证明了这种方法在合成和现实世界数据集上的表现很好。
translated by 谷歌翻译
汤普森抽样(TS)吸引了对强盗区域的兴趣。它在20世纪30年代介绍,但近年来尚未经过理论上证明。其在组合多武装强盗(CMAB)设置中的所有分析都需要精确的Oracle来提供任何输入的最佳解决方案。然而,这种Oracle通常是不可行的,因为许多组合优化问题是NP - 硬,并且只有近似oracles可用。一个例子(王和陈,2018)已经表明TS的失败来学习近似Oracle。但是,此Oracle罕见,仅用于特定问题实例。它仍然是一个开放的问题,无论TS的收敛分析是否可以扩展到CMAB中的精确oracle。在本文中,我们在贪婪的Oracle下研究了这个问题,这是一个常见的(近似)Oracle,具有理论上的保证来解决许多(离线)组合优化问题。我们提供了一个问题依赖性遗憾的遗憾下限为$ \ omega(\ log t / delta ^ 2)$,以量化Ts的硬度来解决贪婪的甲骨文的CMAB问题,其中$ T $是时间范围和$ Delta $是一些奖励差距。我们还提供几乎匹配的遗憾上限。这些是TS解决CMAB与常见近似甲骨文的第一个理论结果,并打破TS无法使用近似神谕的误解。
translated by 谷歌翻译
富达匪徒问题是$ k $的武器问题的变体,其中每个臂的奖励通过提供额外收益的富达奖励来增强,这取决于播放器如何对该臂进行“忠诚”在过去。我们提出了两种忠诚的模型。在忠诚点模型中,额外奖励的数量取决于手臂之前播放的次数。在订阅模型中,额外的奖励取决于手臂的连续绘制的当前数量。我们考虑随机和对抗问题。由于单臂策略在随机问题中并不总是最佳,因此对抗性环境中遗憾的概念需要仔细调整。我们介绍了三个可能的遗憾和调查,这可以是偏执的偏执。我们详细介绍了增加,减少和优惠券的特殊情况(玩家在手臂的每辆M $播放后获得额外的奖励)保真奖励。对于不一定享受载体遗憾的模型,我们提供了最糟糕的下限。对于那些展示Sublinear遗憾的模型,我们提供算法并绑定他们的遗憾。
translated by 谷歌翻译
本文在动态定价的背景下调查预先存在的离线数据对在线学习的影响。我们在$ t $期间的销售地平线上研究单一产品动态定价问题。每个时段的需求由产品价格根据具有未知参数的线性需求模型确定。我们假设在销售地平线开始之前,卖方已经有一些预先存在的离线数据。离线数据集包含$ N $示例,其中每个标准是由历史价格和相关的需求观察组成的输入输出对。卖方希望利用预先存在的离线数据和顺序在线数据来最大限度地减少在线学习过程的遗憾。我们的特征在于在线学习过程的最佳遗憾的脱机数据的大小,位置和分散的联合效果。具体而言,离线数据的大小,位置和色散由历史样本数量为$ n $,平均历史价格与最佳价格$ \ delta $之间的距离以及历史价格的标准差价Sigma $分别。我们表明最佳遗憾是$ \ widetilde \ theta \ left(\ sqrt {t} \ wedge \ frac {t} {(n \ wedge t)\ delta ^ 2 + n \ sigma ^ 2} \右)$,基于“面对不确定性”原则的“乐观主义”的学习算法,其遗憾是最佳的对数因子。我们的结果揭示了对脱机数据的大小的最佳遗憾率的惊人变换,我们称之为阶段转型。此外,我们的结果表明,离线数据的位置和分散也对最佳遗憾具有内在效果,我们通过逆平面法量化了这种效果。
translated by 谷歌翻译
动态治疗方案(DTRS)是个性化的,适应性的,多阶段的治疗计划,可将治疗决策适应个人的初始特征,并在随后的每个阶段中的中级结果和特征,在前阶段受到决策的影响。例子包括对糖尿病,癌症和抑郁症等慢性病的个性化一线和二线治疗,这些治疗适应患者对一线治疗,疾病进展和个人特征的反应。尽管现有文献主要集中于估算离线数据(例如从依次随机试验)中的最佳DTR,但我们研究了以在线方式开发最佳DTR的问题,在线与每个人的互动都会影响我们的累积奖励和我们的数据收集,以供我们的数据收集。未来的学习。我们将其称为DTR匪徒问题。我们提出了一种新颖的算法,通过仔细平衡探索和剥削,可以保证当过渡和奖励模型是线性时,可以实现最佳的遗憾。我们证明了我们的算法及其在合成实验和使用现实世界中对重大抑郁症的适应性治疗的案例研究中的好处。
translated by 谷歌翻译
主导的行动是自然的(也许是最简单的)多代理概括的子最优动作,如标准单代理决策中的那样。因此类似于标准强盗学习,多代理系统中的基本学习问题是如果他们只能观察到他们播放动作的回报的嘈杂的强盗反馈,那么代理商可以学会有效地消除所有主导的动作。令人惊讶的是,尽管有一个看似简单的任务,我们展示了一个相当负面的结果;也就是说,标准没有遗憾的算法 - 包括整个双平均算法的家庭 - 可呈指数级地取消逐渐消除所有主导的行动。此外,具有较强的交换后悔的算法也遭受了类似的指数低效率。为了克服这些障碍,我们开发了一种新的算法,调整EXP3,历史奖励减少(exp3-DH); Exp3-DH逐渐忘记仔细量身定制的速率。我们证明,当所有代理运行Exp3-DH(A.K.A.,在多代理学习中自行发行)时,所有主导的行动都可以在多项多轮内迭代地消除。我们的实验结果进一步证明了Exp3-DH的效率,即使是那些专门用于在游戏中学习的最先进的强盗算法,也无法有效地消除所有主导的行动。
translated by 谷歌翻译
在本文中,我们研究了汤普森采样(TS)方法的应用到随机组合多臂匪徒(CMAB)框架中。当所有基本臂的结果分布都是独立的,并获得$ o(m \ log k _ {\ max} \ log t / \ delta_时,我们首先分析一般CMAB模型的标准TS算法。 {\ min})$,其中$ m $是基本武器的数量,$ k _ {\ max} $是最大的超级臂的大小,$ t $是时间范围,而$ \ delta _ {\ min} $是最佳解决方案的预期奖励与任何非最佳解决方案之间的最小差距。这种遗憾的上限比$ o(m(\ log k _ {\ max})^2 \ log t / \ delta _ {\ min})$更好。此外,我们的新颖分析技术可以帮助收紧其他基于UCB的政策(例如ESC)的遗憾界限,因为我们改善了计算累积遗憾的方法。然后,我们考虑Matroid Bandit设置(CMAB模型的特殊类别),在这里我们可以删除跨武器的独立性假设,并实现与下限匹配的遗憾上限。除了遗憾的上限外,我们还指出,一个人不能直接替换确切的离线甲骨文(将离线问题实例的参数作为输入,并在此实例下输出确切的最佳操作),用TS算法中的近似oracle替换了ts算法的近似值。甚至经典的mAb问题。最后,我们使用一些实验来显示TS遗憾与其他现有算法之间的比较,实验结果表明TS优于现有基准。
translated by 谷歌翻译
合作匪徒问题越来越多地成为其在大规模决策中的应用。然而,对此问题的大多数研究专注于具有完美通信的环境,而在大多数现实世界分布式设置中,通信通常是随机网络,具有任意损坏和延迟。在本文中,我们在三个典型的真实沟通场景下研究了合作匪徒学习,即(a)通过随机时变网络的消息传递,(b)通过随机延迟的网络瞬时奖励共享(c )通过对冲损坏的奖励来传递消息,包括拜占庭式沟通。对于每个环境中的每一个,我们提出了实现竞争性能的分散算法,以及在发生的群体后悔的近乎最佳保证。此外,在具有完美通信的环境中,我们提出了一种改进的延迟更新算法,其优于各种网络拓扑的现有最先进的算法。最后,我们在集团后悔呈现紧密的网络依赖性最低限度。我们所提出的算法很简单,以实现和获得竞争性的经验性能。
translated by 谷歌翻译
在古典语境匪徒问题中,在每轮$ t $,学习者观察一些上下文$ c $,选择一些动作$ i $执行,并收到一些奖励$ r_ {i,t}(c)$。我们考虑此问题的变体除了接收奖励$ r_ {i,t}(c)$之外,学习者还要学习其他一些上下文$的$ r_ {i,t}(c')$的值C'$ in设置$ \ mathcal {o} _i(c)$;即,通过在不同的上下文下执行该行动来实现的奖励\ mathcal {o} _i(c)$。这种变体出现在若干战略设置中,例如学习如何在非真实的重复拍卖中出价,最热衷于随着许多平台转换为运行的第一价格拍卖。我们将此问题称为交叉学习的上下文匪徒问题。古典上下围匪徒问题的最佳算法达到$ \ tilde {o}(\ sqrt {ckt})$遗憾针对所有固定策略,其中$ c $是上下文的数量,$ k $的行动数量和$ $次数。我们设计并分析了交叉学习的上下文匪徒问题的新算法,并表明他们的遗憾更好地依赖上下文的数量。在选择动作时学习所有上下文的奖励的完整交叉学习下,即设置$ \ mathcal {o} _i(c)$包含所有上下文,我们显示我们的算法实现后悔$ \ tilde {o}( \ sqrt {kt})$,删除$ c $的依赖。对于任何其他情况,即在部分交叉学习下,$ | \ mathcal {o} _i(c)| <c $ for $(i,c)$,遗憾界限取决于如何设置$ \ mathcal o_i(c)$影响上下文之间的交叉学习的程度。我们从Ad Exchange运行一流拍卖的广告交换中模拟了我们的真实拍卖数据的算法,并表明了它们优于传统的上下文强盗算法。
translated by 谷歌翻译
我们研究了$ k $武装的决斗匪徒问题,这是传统的多武器匪徒问题的一种变体,其中以成对比较的形式获得了反馈。以前的学习算法专注于$ \ textit {完全自适应} $设置,在每次比较后,算法可以进行更新。 “批处理”决斗匪徒问题是由Web搜索排名和推荐系统等大规模应用程序激励的,在这种应用程序中执行顺序更新可能是不可行的。在这项工作中,我们要问:$ \ textit {是否只使用几个自适应回合有解决方案,该回合与$ k $ armed的决斗匪徒的最佳顺序算法的渐近后悔界限?} $? \ textit {在condorcet条件下} $,这是$ k $武装的决斗匪徒问题的标准设置。我们获得$ O(k^2 \ log^2(k)) + O(k \ log(t))$的渐近遗憾地平线。我们的遗憾界限几乎与在Condorcet条件下完全顺序环境中已知的最佳后悔界限相匹配。最后,在各种现实世界数据集的计算实验中,我们观察到使用$ o(\ log(t))$ rounds的算法与完全顺序的算法(使用$ t $ rounds)的性能几乎相同。
translated by 谷歌翻译
在线学习通常需要探索以最大程度地提高长期奖励,但这是以短期“遗憾”为代价的。我们研究如何在多个小组之间分担这种探索成本。例如,在临床试验环境中,分配了亚最佳治疗的患者有效地产生了勘探成本。当患者根据种族或年龄与自然群体相关联时,自然要问任何单一群体所承担的探索成本是否“公平”。如此有动力,我们介绍了“分组”的强盗模型。我们利用公理讨价还价的理论,尤其是纳什议价解决方案,以形式化可能构成跨群体勘探成本的公平分裂的方式。一方面,我们表明,任何遗憾的政策都引起了最不公平的结果:此类政策将在可能的情况下传递最“处于弱势”的群体。更具建设性的方式,我们得出了最佳公平且同时享受“公平价格”的政策。我们通过对华法林剂量的上下文匪徒进行案例研究来说明我们的算法框架的相对优点,我们关注多个种族和年龄段的探索成本。
translated by 谷歌翻译
在随机上下文的强盗设置中,对遗憾最小化算法进行了广泛的研究,但是他们的实例最少的最佳武器识别对应物仍然很少研究。在这项工作中,我们将重点关注$(\ epsilon,\ delta)$ - $ \ textit {pac} $设置:给定策略类$ \ pi $,学习者的目标是返回策略的目标, $ \ pi \ in \ pi $的预期奖励在最佳政策的$ \ epsilon $之内,概率大于$ 1- \ delta $。我们表征了第一个$ \ textit {实例依赖性} $ PAC样品通过数量$ \ rho _ {\ pi} $的上下文匪徒的复杂性,并根据$ \ rho _ {\ pi} $提供匹配的上和下限不可知论和线性上下文最佳武器标识设置。我们表明,对于遗憾的最小化和实例依赖性PAC而言,无法同时最小化算法。我们的主要结果是一种新的实例 - 最佳和计算有效算法,该算法依赖于多项式呼叫对Argmax Oracle的调用。
translated by 谷歌翻译
我们介绍了一个多臂强盗模型,其中奖励是多个随机变量的总和,每个动作只会改变其中的分布。每次动作之后,代理都会观察所有变量的实现。该模型是由营销活动和推荐系统激励的,在该系统中,变量代表单个客户的结果,例如点击。我们提出了UCB风格的算法,以估计基线上的动作的提升。我们研究了问题的多种变体,包括何时未知基线和受影响的变量,并证明所有这些变量均具有sublrinear后悔界限。我们还提供了较低的界限,以证明我们的建模假设的必要性是合理的。关于合成和现实世界数据集的实验显示了估计不使用这种结构的策略的振奋方法的好处。
translated by 谷歌翻译
获取一阶遗憾界限 - 遗憾的界限不是作为最坏情况,但有一些衡量给定实例的最佳政策的性能 - 是连续决策的核心问题。虽然这种界限存在于许多设置中,但它们在具有大状态空间的钢筋学习中被证明是难以捉摸的。在这项工作中,我们解决了这个差距,并表明可以将遗憾的缩放作为$ \ mathcal {o}(\ sqrt {v_1 ^ \ star})$中的钢筋学习,即用大状态空间,即线性MDP设置。这里$ v_1 ^ \ star $是最佳政策的价值,$ k $是剧集的数量。我们证明基于最小二乘估计的现有技术不足以获得该结果,而是基于强大的Catoni平均估计器制定一种新的稳健自归一化浓度,其可能具有独立兴趣。
translated by 谷歌翻译
我们考虑带有背包的土匪(从此以后,BWK),这是一种在供应/预算限制下的多臂土匪的通用模型。特别是,强盗算法需要解决一个众所周知的背包问题:找到最佳的物品包装到有限尺寸的背包中。 BWK问题是众多激励示例的普遍概括,范围从动态定价到重复拍卖,再到动态AD分配,再到网络路由和调度。尽管BWK的先前工作集中在随机版本上,但我们开创了可以在对手身上选择结果的另一个极端。与随机版本和“经典”对抗土匪相比,这是一个更加困难的问题,因为遗憾的最小化不再可行。相反,目的是最大程度地减少竞争比率:基准奖励与算法奖励的比率。我们设计了一种具有竞争比O(log t)的算法,相对于动作的最佳固定分布,其中T是时间范围;我们还证明了一个匹配的下限。关键的概念贡献是对问题的随机版本的新观点。我们为随机版本提出了一种新的算法,该算法是基于重复游戏中遗憾最小化的框架,并且与先前的工作相比,它具有更简单的分析。然后,我们为对抗版本分析此算法,并将其用作求解后者的子例程。
translated by 谷歌翻译