相互作用的粒子系统在科学和工程中起着关键作用。访问管理粒子相互作用定律是对此类系统的完整理解至关重要的。但是,固有的系统复杂性使粒子相互作用在许多情况下隐藏了。机器学习方法有可能通过将实验与数据分析方法相结合来学习相互作用的粒子系统的行为。但是,大多数现有的算法都集中在学习粒子水平的动力学上。学习成对相互作用,例如成对力或成对势能,仍然是一个开放的挑战。在这里,我们提出了一种适应图网络框架的算法,该算法包含一个边缘零件,以学习成对相互作用和节点部分,以在粒子级别对动力学进行建模。与在两个部分中使用神经网络的现有方法不同,我们在节点部分中设计了确定性操作员,该方法允许精确推断出与基本物理定律一致的成对相互作用,仅通过训​​练以预测粒子加速度。我们在多个数据集上测试了所提出的方法,并证明它在正确推断成对相互作用的同时也与所有数据集上的基础物理学一致,在正确推断成对相互作用方面取得了出色的性能。所提出的框架可扩展到较大的系统,并可以转移到任何类型的粒子相互作用。开发的方法可以支持对潜在粒子相互作用定律的更好理解和发现,从而指导具有目标特性的材料的设计。
translated by 谷歌翻译
具有基于物理的诱导偏见的神经网络,例如拉格朗日神经网络(LNN)和汉密尔顿神经网络(HNN),通过编码强诱导性偏见来学习物理系统的动态。另外,还显示出适当的感应偏见的神经odes具有相似的性能。但是,当这些模型应用于基于粒子的系统时,本质上具有转导性,因此不会推广到大型系统尺寸。在本文中,我们提出了基于图的神经ode gnode,以了解动力学系统的时间演变。此外,我们仔细分析了不同电感偏差对GNODE性能的作用。我们表明,与LNN和HNN类似,对约束进行编码可以显着提高GNODE的训练效率和性能。我们的实验还评估了该模型最终性能的其他归纳偏差(例如纽顿第三定律)的价值。我们证明,诱导这些偏见可以在能量违规和推出误差方面通过数量级来增强模型的性能。有趣的是,我们观察到,经过最有效的电感偏见训练的GNODE,即McGnode,优于LNN和HNN的图形版本,即Lagrangian Graph Networks(LGN)和Hamiltonian Graph网络(HGN)在能量侵犯的方面差异,该图表的差异大约是能量侵犯网络(HGN)摆钟系统的4个数量级,春季系统的数量级约为2个数量级。这些结果表明,可以通过诱导适当的电感偏见来获得基于节点的系统的能源保存神经网络的竞争性能。
translated by 谷歌翻译
分子动力学(MD)仿真是一种强大的工具,用于了解物质的动态和结构。由于MD的分辨率是原子尺度,因此实现了使用飞秒集成的长时间模拟非常昂贵。在每个MD步骤中,执行许多可以学习和避免的冗余计算。这些冗余计算可以由像图形神经网络(GNN)的深度学习模型代替和建模。在这项工作中,我们开发了一个GNN加速分子动力学(GAMD)模型,实现了快速准确的力预测,并产生与经典MD模拟一致的轨迹。我们的研究结果表明,Gamd可以准确地预测两个典型的分子系统,Lennard-Jones(LJ)颗粒和水(LJ +静电)的动态。 GAMD的学习和推理是不可知论的,它可以在测试时间缩放到更大的系统。我们还进行了一项全面的基准测试,将GAMD的实施与生产级MD软件进行了比较,我们展示了GAMD在大规模模拟上对它们具有竞争力。
translated by 谷歌翻译
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
translated by 谷歌翻译
物理系统通常表示为粒子的组合,即控制系统动力学的个体动力学。但是,传统方法需要了解几个抽象数量的知识,例如推断这些颗粒动力学的能量或力量。在这里,我们提出了一个框架,即拉格朗日图神经网络(LGNN),它提供了强烈的感应偏见,可以直接从轨迹中学习基于粒子系统的拉格朗日。我们在具有约束和阻力的挑战系统上测试我们的方法 - LGNN优于诸如前馈拉格朗日神经网络(LNN)等基线,其性能提高。我们还通过模拟系统模拟系统的两个数量级比受过训练的一个数量级和混合系统大的数量级来显示系统的零弹性通用性,这些数量级是一个独特的功能。与LNN相比,LGNN的图形体系结构显着简化了学习,其性能在少量少量数据上的性能高25倍。最后,我们显示了LGNN的解释性,该解释性直接提供了对模型学到的阻力和约束力的物理见解。因此,LGNN可以为理解物理系统的动力学提供纯粹的填充,这纯粹是从可观察的数量中。
translated by 谷歌翻译
Here we present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and deformable materials interacting with one another. Our framework-which we term "Graph Network-based Simulators" (GNS)-represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing. Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time. Our model was robust to hyperparameter choices across various evaluation metrics: the main determinants of long-term performance were the number of message-passing steps, and mitigating the accumulation of error by corrupting the training data with noise. Our GNS framework advances the state-of-the-art in learned physical simulation, and holds promise for solving a wide range of complex forward and inverse problems.
translated by 谷歌翻译
The abundance of data has given machine learning considerable momentum in natural sciences and engineering, though modeling of physical processes is often difficult. A particularly tough problem is the efficient representation of geometric boundaries. Triangularized geometric boundaries are well understood and ubiquitous in engineering applications. However, it is notoriously difficult to integrate them into machine learning approaches due to their heterogeneity with respect to size and orientation. In this work, we introduce an effective theory to model particle-boundary interactions, which leads to our new Boundary Graph Neural Networks (BGNNs) that dynamically modify graph structures to obey boundary conditions. The new BGNNs are tested on complex 3D granular flow processes of hoppers, rotating drums and mixers, which are all standard components of modern industrial machinery but still have complicated geometry. BGNNs are evaluated in terms of computational efficiency as well as prediction accuracy of particle flows and mixing entropies. BGNNs are able to accurately reproduce 3D granular flows within simulation uncertainties over hundreds of thousands of simulation timesteps. Most notably, in our experiments, particles stay within the geometric objects without using handcrafted conditions or restrictions.
translated by 谷歌翻译
在这项工作中,我们提出了一个端到端的图形网络,其使用可解释的电感偏差来学习粒子基物理学的前进和逆模型。物理知识的神经网络通常通过特定于问题的正则化和损失功能来解决特定问题。这种显式学习偏置网络以学习数据特定模式,并且可能需要在特此限制其Generalizabiliy的丢失功能或神经网络架构的变化。虽然最近的研究已经提出了图形网络来研究前瞻性动态,但它们依赖于粒子特定参数,例如质量等。我们的图形网络通过学习来隐含地偏见,以解决多项任务,从而在任务之间共享表示,以便学习前向动态以及推断未知粒子特定属性的概率分布。我们在一步的下一个状态预测任务上评估了我们的方法,这些任务跨越具有不同粒子交互的不同数据集。我们对相关数据驱动物理学学习方法的比较揭示了我们的模型能够预测至少一种更高的准确度的前向动态。我们还表明,我们的方法能够使用较少的样本的数量令恢复未知物理参数的多模态概率分布。
translated by 谷歌翻译
Interacting systems are prevalent in nature, from dynamical systems in physics to complex societal dynamics. The interplay of components can give rise to complex behavior, which can often be explained using a simple model of the system's constituent parts. In this work, we introduce the neural relational inference (NRI) model: an unsupervised model that learns to infer interactions while simultaneously learning the dynamics purely from observational data. Our model takes the form of a variational auto-encoder, in which the latent code represents the underlying interaction graph and the reconstruction is based on graph neural networks. In experiments on simulated physical systems, we show that our NRI model can accurately recover ground-truth interactions in an unsupervised manner. We further demonstrate that we can find an interpretable structure and predict complex dynamics in real motion capture and sports tracking data.
translated by 谷歌翻译
分子动力学(MD)模拟是各种科学领域的主力,但受到高计算成本的限制。基于学习的力场在加速AB-Initio MD模拟方面取得了重大进展,但对于许多需要长期MD仿真的现实世界应用程序仍然不够快。在本文中,我们采用了一种不同的机器学习方法,使用图形群集将物理系统粗糙化,并使用图形神经网络使用非常大的时间整合步骤对系统演变进行建模。一个新型的基于分数的GNN改进模块解决了长期模拟不稳定性的长期挑战。尽管仅接受了简短的MD轨迹数据训练,但我们学到的模拟器仍可以推广到看不见的新型系统,并比训练轨迹更长的时间。需要10-100 ns级的长时间动力学的属性可以在多个刻度级的速度上准确恢复,而不是经典的力场。我们证明了方法对两个现实的复杂系统的有效性:(1)隐式溶剂中的单链粗粒聚合物; (2)多组分锂离子聚合物电解质系统。
translated by 谷歌翻译
Lagrangian和Hamiltonian神经网络(分别是LNN和HNN)编码强诱导偏见,使它们能够显着优于其他物理系统模型。但是,到目前为止,这些模型大多仅限于简单的系统,例如摆和弹簧或单个刚体的身体,例如陀螺仪或刚性转子。在这里,我们提出了一个拉格朗日图神经网络(LGNN),可以通过利用其拓扑来学习刚体的动态。我们通过学习以刚体为刚体的棒的绳索,链条和桁架的动力学来证明LGNN的性能。 LGNN还表现出普遍性 - 在链条上训练了一些细分市场的LGNN具有概括性,以模拟具有大量链接和任意链路长度的链条。我们还表明,LGNN可以模拟看不见的混合动力系统,包括尚未接受过培训的酒吧和链条。具体而言,我们表明LGNN可用于建模复杂的现实世界结构的动力学,例如紧张结构的稳定性。最后,我们讨论了质量矩阵的非对角性性质及其在复杂系统中概括的能力。
translated by 谷歌翻译
机器人中的一个重要挑战是了解机器人与由粒状材料组成的可变形地形之间的相互作用。颗粒状流量及其与刚体的互动仍然造成了几个开放的问题。有希望的方向,用于准确,且有效的建模使用的是使用连续体方法。此外,实时物理建模的新方向是利用深度学习。该研究推进了用于对刚性体驱动颗粒流建模的机器学习方法,用于应用于地面工业机器以及空间机器人(重力的效果是一个重要因素的地方)。特别是,该研究考虑了子空间机器学习仿真方法的开发。要生成培训数据集,我们利用我们的高保真连续体方法,材料点法(MPM)。主要成分分析(PCA)用于降低数据的维度。我们表明我们的高维数据的前几个主要组成部分几乎保持了数据的整个方差。培训图形网络模拟器(GNS)以学习底层子空间动态。然后,学习的GNS能够以良好的准确度预测颗粒位置和交互力。更重要的是,PCA在训练和卷展栏中显着提高了GNS的时间和记忆效率。这使得GNS能够使用具有中等VRAM的单个桌面GPU进行培训。这也使GNS实时在大规模3D物理配置(比我们的连续方法快700倍)。
translated by 谷歌翻译
这项工作介绍了神经性等因素的外部潜力(NEQUIP),E(3) - 用于学习分子动力学模拟的AB-INITIO计算的用于学习网状体电位的e(3)的神经网络方法。虽然大多数当代对称的模型使用不变的卷曲,但仅在标量上采取行动,Nequip采用E(3) - 几何张量的相互作用,举起Quivariant卷曲,导致了更多的信息丰富和忠实的原子环境代表。该方法在挑战和多样化的分子和材料集中实现了最先进的准确性,同时表现出显着的数据效率。 Nequip优先于现有型号,最多三个数量级的培训数据,挑战深度神经网络需要大量培训套装。该方法的高数据效率允许使用高阶量子化学水平的理论作为参考的精确潜力构建,并且在长时间尺度上实现高保真分子动力学模拟。
translated by 谷歌翻译
我们将图形神经网络训练来自小工具N体模拟的光晕目录的神经网络,以执行宇宙学参数的无现场级别可能的推断。目录包含$ \ Lessim $ 5,000 HAROS带质量$ \ gtrsim 10^{10} 〜h^{ - 1} m_ \ odot $,定期卷为$(25〜H^{ - 1} {\ rm mpc}){\ rm mpc}) ^3 $;目录中的每个光环都具有多种特性,例如位置,质量,速度,浓度和最大圆速度。我们的模型构建为置换,翻译和旋转的不变性,不施加最低限度的规模来提取信息,并能够以平均值来推断$ \ omega _ {\ rm m} $和$ \ sigma_8 $的值$ \ sim6 \%$的相对误差分别使用位置加上速度和位置加上质量。更重要的是,我们发现我们的模型非常强大:他们可以推断出使用数千个N-n-Body模拟的Halo目录进行测试时,使用五个不同的N-进行测试时,在使用Halo目录进行测试时,$ \ omega _ {\ rm m} $和$ \ sigma_8 $身体代码:算盘,Cubep $^3 $ M,Enzo,PKDGrav3和Ramses。令人惊讶的是,经过培训的模型推断$ \ omega _ {\ rm m} $在对数千个最先进的骆驼水力动力模拟进行测试时也可以使用,该模拟使用四个不同的代码和子网格物理实现。使用诸如浓度和最大循环速度之类的光环特性允许我们的模型提取更多信息,而牺牲了模型的鲁棒性。这可能会发生,因为不同的N体代码不会在与这些参数相对应的相关尺度上收敛。
translated by 谷歌翻译
在学识表的迅速推进的地区,几乎所有方法都训练了从输入状态直接预测未来状态的前进模型。然而,许多传统的仿真引擎使用基于约束的方法而不是直接预测。这里我们提出了一种基于约束的学习仿真的框架,其中标量约束函数被实现为神经网络,并且将来的预测被计算为在这些学习的约束下的优化问题的解决方案。我们使用图形神经网络作为约束函数和梯度下降作为约束求解器来实现我们的方法。架构可以通过标准的backprojagation培训。我们在各种具有挑战性的物理领域中测试模型,包括模拟绳索,弹跳球,碰撞不规则形状和飞溅液。我们的模型可实现更好或更具可比性的性能,以获得最佳学习的模拟器。我们模型的一个关键优势是能够在测试时间概括到更多求解器迭代,以提高模拟精度。我们还展示了如何在测试时间内添加手工制定的约束,以满足培训数据中不存在的目标,这是不可能的前进方法。我们的约束框架适用于使用前进学习模拟器的任何设置,并演示了学习的模拟器如何利用额外的归纳偏差以及来自数值方法领域的技术。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
包括协调性信息,例如位置,力,速度或旋转在计算物理和化学中的许多任务中是重要的。我们介绍了概括了等级图形网络的可控e(3)的等值图形神经网络(Segnns),使得节点和边缘属性不限于不变的标量,而是可以包含相协同信息,例如矢量或张量。该模型由可操纵的MLP组成,能够在消息和更新功能中包含几何和物理信息。通过可操纵节点属性的定义,MLP提供了一种新的Activation函数,以便与可转向功能字段一般使用。我们讨论我们的镜头通过等级的非线性卷曲镜头讨论我们的相关工作,进一步允许我们引脚点点的成功组件:非线性消息聚集在经典线性(可操纵)点卷积上改善;可操纵的消息在最近发送不变性消息的最近的等价图形网络上。我们展示了我们对计算物理学和化学的若干任务的方法的有效性,并提供了广泛的消融研究。
translated by 谷歌翻译
群体模棱两可(例如,SE(3)均衡性)是科学的关键物理对称性,从经典和量子物理学到计算生物学。它可以在任意参考转换下实现强大而准确的预测。鉴于此,已经为将这种对称性编码为深神经网络而做出了巨大的努力,该网络已被证明可以提高下游任务的概括性能和数据效率。构建模棱两可的神经网络通常会带来高计算成本以确保表现力。因此,如何更好地折衷表现力和计算效率在模棱两可的深度学习模型的设计中起着核心作用。在本文中,我们提出了一个框架来构建可以有效地近似几何量的se(3)等效图神经网络。受差异几何形状和物理学的启发,我们向图形神经网络介绍了局部完整帧,因此可以将以给定订单的张量信息投射到框架上。构建本地框架以形成正常基础,以避免方向变性并确保完整性。由于框架仅是由跨产品操作构建的,因此我们的方法在计算上是有效的。我们在两个任务上评估我们的方法:牛顿力学建模和平衡分子构象的产生。广泛的实验结果表明,我们的模型在两种类型的数据集中达到了最佳或竞争性能。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
离散脱位动力学(DDD)是一种广泛使用的计算方法,用于研究中尺度上的可塑性,将位错线的运动与晶体材料的宏观响应联系起来。但是,DDD模拟的计算成本仍然是限制其适用性范围的瓶颈。在这里,我们介绍了一个新的DDD-GNN框架,其中昂贵的位错运动的时间整合完全被培训的DDD轨迹训练的图神经网络(GNN)模型代替。作为第一个应用,我们在简单但相关的位错线模型上滑行障碍森林的简单但相关的模型,证明了我们方法的可行性和潜力。我们表明,DDD-GNN模型是稳定的,并且对一系列紧张的速率和障碍物密度的重现,无需在时间整合过程中明确计算淋巴结或脱位迁移率。我们的方法开放了新的有前途的途径,以加速DDD模拟并结合更复杂的脱位运动行为。
translated by 谷歌翻译