在这项工作中,我们提出了一个端到端的图形网络,其使用可解释的电感偏差来学习粒子基物理学的前进和逆模型。物理知识的神经网络通常通过特定于问题的正则化和损失功能来解决特定问题。这种显式学习偏置网络以学习数据特定模式,并且可能需要在特此限制其Generalizabiliy的丢失功能或神经网络架构的变化。虽然最近的研究已经提出了图形网络来研究前瞻性动态,但它们依赖于粒子特定参数,例如质量等。我们的图形网络通过学习来隐含地偏见,以解决多项任务,从而在任务之间共享表示,以便学习前向动态以及推断未知粒子特定属性的概率分布。我们在一步的下一个状态预测任务上评估了我们的方法,这些任务跨越具有不同粒子交互的不同数据集。我们对相关数据驱动物理学学习方法的比较揭示了我们的模型能够预测至少一种更高的准确度的前向动态。我们还表明,我们的方法能够使用较少的样本的数量令恢复未知物理参数的多模态概率分布。
translated by 谷歌翻译
机器人中的一个重要挑战是了解机器人与由粒状材料组成的可变形地形之间的相互作用。颗粒状流量及其与刚体的互动仍然造成了几个开放的问题。有希望的方向,用于准确,且有效的建模使用的是使用连续体方法。此外,实时物理建模的新方向是利用深度学习。该研究推进了用于对刚性体驱动颗粒流建模的机器学习方法,用于应用于地面工业机器以及空间机器人(重力的效果是一个重要因素的地方)。特别是,该研究考虑了子空间机器学习仿真方法的开发。要生成培训数据集,我们利用我们的高保真连续体方法,材料点法(MPM)。主要成分分析(PCA)用于降低数据的维度。我们表明我们的高维数据的前几个主要组成部分几乎保持了数据的整个方差。培训图形网络模拟器(GNS)以学习底层子空间动态。然后,学习的GNS能够以良好的准确度预测颗粒位置和交互力。更重要的是,PCA在训练和卷展栏中显着提高了GNS的时间和记忆效率。这使得GNS能够使用具有中等VRAM的单个桌面GPU进行培训。这也使GNS实时在大规模3D物理配置(比我们的连续方法快700倍)。
translated by 谷歌翻译
Here we present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and deformable materials interacting with one another. Our framework-which we term "Graph Network-based Simulators" (GNS)-represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing. Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time. Our model was robust to hyperparameter choices across various evaluation metrics: the main determinants of long-term performance were the number of message-passing steps, and mitigating the accumulation of error by corrupting the training data with noise. Our GNS framework advances the state-of-the-art in learned physical simulation, and holds promise for solving a wide range of complex forward and inverse problems.
translated by 谷歌翻译
Interacting systems are prevalent in nature, from dynamical systems in physics to complex societal dynamics. The interplay of components can give rise to complex behavior, which can often be explained using a simple model of the system's constituent parts. In this work, we introduce the neural relational inference (NRI) model: an unsupervised model that learns to infer interactions while simultaneously learning the dynamics purely from observational data. Our model takes the form of a variational auto-encoder, in which the latent code represents the underlying interaction graph and the reconstruction is based on graph neural networks. In experiments on simulated physical systems, we show that our NRI model can accurately recover ground-truth interactions in an unsupervised manner. We further demonstrate that we can find an interpretable structure and predict complex dynamics in real motion capture and sports tracking data.
translated by 谷歌翻译
在学识表的迅速推进的地区,几乎所有方法都训练了从输入状态直接预测未来状态的前进模型。然而,许多传统的仿真引擎使用基于约束的方法而不是直接预测。这里我们提出了一种基于约束的学习仿真的框架,其中标量约束函数被实现为神经网络,并且将来的预测被计算为在这些学习的约束下的优化问题的解决方案。我们使用图形神经网络作为约束函数和梯度下降作为约束求解器来实现我们的方法。架构可以通过标准的backprojagation培训。我们在各种具有挑战性的物理领域中测试模型,包括模拟绳索,弹跳球,碰撞不规则形状和飞溅液。我们的模型可实现更好或更具可比性的性能,以获得最佳学习的模拟器。我们模型的一个关键优势是能够在测试时间概括到更多求解器迭代,以提高模拟精度。我们还展示了如何在测试时间内添加手工制定的约束,以满足培训数据中不存在的目标,这是不可能的前进方法。我们的约束框架适用于使用前进学习模拟器的任何设置,并演示了学习的模拟器如何利用额外的归纳偏差以及来自数值方法领域的技术。
translated by 谷歌翻译
Simulating rigid collisions among arbitrary shapes is notoriously difficult due to complex geometry and the strong non-linearity of the interactions. While graph neural network (GNN)-based models are effective at learning to simulate complex physical dynamics, such as fluids, cloth and articulated bodies, they have been less effective and efficient on rigid-body physics, except with very simple shapes. Existing methods that model collisions through the meshes' nodes are often inaccurate because they struggle when collisions occur on faces far from nodes. Alternative approaches that represent the geometry densely with many particles are prohibitively expensive for complex shapes. Here we introduce the Face Interaction Graph Network (FIGNet) which extends beyond GNN-based methods, and computes interactions between mesh faces, rather than nodes. Compared to learned node- and particle-based methods, FIGNet is around 4x more accurate in simulating complex shape interactions, while also 8x more computationally efficient on sparse, rigid meshes. Moreover, FIGNet can learn frictional dynamics directly from real-world data, and can be more accurate than analytical solvers given modest amounts of training data. FIGNet represents a key step forward in one of the few remaining physical domains which have seen little competition from learned simulators, and offers allied fields such as robotics, graphics and mechanical design a new tool for simulation and model-based planning.
translated by 谷歌翻译
相互作用的粒子系统在科学和工程中起着关键作用。访问管理粒子相互作用定律是对此类系统的完整理解至关重要的。但是,固有的系统复杂性使粒子相互作用在许多情况下隐藏了。机器学习方法有可能通过将实验与数据分析方法相结合来学习相互作用的粒子系统的行为。但是,大多数现有的算法都集中在学习粒子水平的动力学上。学习成对相互作用,例如成对力或成对势能,仍然是一个开放的挑战。在这里,我们提出了一种适应图网络框架的算法,该算法包含一个边缘零件,以学习成对相互作用和节点部分,以在粒子级别对动力学进行建模。与在两个部分中使用神经网络的现有方法不同,我们在节点部分中设计了确定性操作员,该方法允许精确推断出与基本物理定律一致的成对相互作用,仅通过训​​练以预测粒子加速度。我们在多个数据集上测试了所提出的方法,并证明它在正确推断成对相互作用的同时也与所有数据集上的基础物理学一致,在正确推断成对相互作用方面取得了出色的性能。所提出的框架可扩展到较大的系统,并可以转移到任何类型的粒子相互作用。开发的方法可以支持对潜在粒子相互作用定律的更好理解和发现,从而指导具有目标特性的材料的设计。
translated by 谷歌翻译
Deep learning models, though having achieved great success in many different fields over the past years, are usually data hungry, fail to perform well on unseen samples, and lack of interpretability. Various prior knowledge often exists in the target domain and their use can alleviate the deficiencies with deep learning. To better mimic the behavior of human brains, different advanced methods have been proposed to identify domain knowledge and integrate it into deep models for data-efficient, generalizable, and interpretable deep learning, which we refer to as knowledge-augmented deep learning (KADL). In this survey, we define the concept of KADL, and introduce its three major tasks, i.e., knowledge identification, knowledge representation, and knowledge integration. Different from existing surveys that are focused on a specific type of knowledge, we provide a broad and complete taxonomy of domain knowledge and its representations. Based on our taxonomy, we provide a systematic review of existing techniques, different from existing works that survey integration approaches agnostic to taxonomy of knowledge. This survey subsumes existing works and offers a bird's-eye view of research in the general area of knowledge-augmented deep learning. The thorough and critical reviews of numerous papers help not only understand current progresses but also identify future directions for the research on knowledge-augmented deep learning.
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
学习动态是机器学习(ML)的许多重要应用的核心,例如机器人和自主驾驶。在这些设置中,ML算法通常需要推理使用高维观察的物理系统,例如图像,而不访问底层状态。最近,已经提出了几种方法将从经典机制的前沿集成到ML模型中,以解决图像的物理推理的挑战。在这项工作中,我们清醒了这些模型的当前功能。为此,我们介绍一套由17个数据集组成的套件,该数据集基于具有呈现各种动态的物理系统的视觉观测。我们对几种强大的基线进行了彻底的和详细比较了物理启发方法的主要类别。虽然包含物理前沿的模型通常可以学习具有所需特性的潜在空间,但我们的结果表明这些方法无法显着提高标准技术。尽管如此,我们发现使用连续和时间可逆动力学的使用效益所有课程的模型。
translated by 谷歌翻译
Reasoning about objects, relations, and physics is central to human intelligence, and a key goal of artificial intelligence. Here we introduce the interaction network, a model which can reason about how objects in complex systems interact, supporting dynamical predictions, as well as inferences about the abstract properties of the system. Our model takes graphs as input, performs object-and relation-centric reasoning in a way that is analogous to a simulation, and is implemented using deep neural networks. We evaluate its ability to reason about several challenging physical domains: n-body problems, rigid-body collision, and non-rigid dynamics. Our results show it can be trained to accurately simulate the physical trajectories of dozens of objects over thousands of time steps, estimate abstract quantities such as energy, and generalize automatically to systems with different numbers and configurations of objects and relations. Our interaction network implementation is the first general-purpose, learnable physics engine, and a powerful general framework for reasoning about object and relations in a wide variety of complex real-world domains.
translated by 谷歌翻译
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
translated by 谷歌翻译
由于难以建模彼此的材料颗粒,颗粒材料如沙子或水稻的操纵仍然是一个未解决的挑战。目前的方法倾向于简化材料动态并省略颗粒之间的相互作用。在本文中,我们建议使用基于图形的表示来模拟材料和刚体操纵它的刚体的相互作用动态。这允许规划操纵轨迹以达到材料的所需配置。我们使用图形神经网络(GNN)通过消息传递来模拟粒子交互。为了规划操纵轨迹,我们建议最小化粒状粒子分布和所需配置之间的Wasserstein距离。我们证明,在模拟和实际情况下,该方法能够将粒状材料倒入所需的配置中。
translated by 谷歌翻译
物理系统通常表示为粒子的组合,即控制系统动力学的个体动力学。但是,传统方法需要了解几个抽象数量的知识,例如推断这些颗粒动力学的能量或力量。在这里,我们提出了一个框架,即拉格朗日图神经网络(LGNN),它提供了强烈的感应偏见,可以直接从轨迹中学习基于粒子系统的拉格朗日。我们在具有约束和阻力的挑战系统上测试我们的方法 - LGNN优于诸如前馈拉格朗日神经网络(LNN)等基线,其性能提高。我们还通过模拟系统模拟系统的两个数量级比受过训练的一个数量级和混合系统大的数量级来显示系统的零弹性通用性,这些数量级是一个独特的功能。与LNN相比,LGNN的图形体系结构显着简化了学习,其性能在少量少量数据上的性能高25倍。最后,我们显示了LGNN的解释性,该解释性直接提供了对模型学到的阻力和约束力的物理见解。因此,LGNN可以为理解物理系统的动力学提供纯粹的填充,这纯粹是从可观察的数量中。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
具有基于物理的诱导偏见的神经网络,例如拉格朗日神经网络(LNN)和汉密尔顿神经网络(HNN),通过编码强诱导性偏见来学习物理系统的动态。另外,还显示出适当的感应偏见的神经odes具有相似的性能。但是,当这些模型应用于基于粒子的系统时,本质上具有转导性,因此不会推广到大型系统尺寸。在本文中,我们提出了基于图的神经ode gnode,以了解动力学系统的时间演变。此外,我们仔细分析了不同电感偏差对GNODE性能的作用。我们表明,与LNN和HNN类似,对约束进行编码可以显着提高GNODE的训练效率和性能。我们的实验还评估了该模型最终性能的其他归纳偏差(例如纽顿第三定律)的价值。我们证明,诱导这些偏见可以在能量违规和推出误差方面通过数量级来增强模型的性能。有趣的是,我们观察到,经过最有效的电感偏见训练的GNODE,即McGnode,优于LNN和HNN的图形版本,即Lagrangian Graph Networks(LGN)和Hamiltonian Graph网络(HGN)在能量侵犯的方面差异,该图表的差异大约是能量侵犯网络(HGN)摆钟系统的4个数量级,春季系统的数量级约为2个数量级。这些结果表明,可以通过诱导适当的电感偏见来获得基于节点的系统的能源保存神经网络的竞争性能。
translated by 谷歌翻译
了解晕星连接是基本的,以提高我们对暗物质的性质和性质的知识。在这项工作中,我们构建一个模型,鉴于IT主机的星系的位置,速度,恒星群体和半径的位置。为了捕获来自星系属性的相关性及其相位空间的相关信息,我们使用图形神经网络(GNN),该网络设计用于使用不规则和稀疏数据。我们从宇宙学和天体物理学中培训了我们在Galaxies上的模型,从宇宙学和天体物理学与机器学习模拟(骆驼)项目。我们的模型,占宇宙学和天体物理的不确定性,能够用$ \ SIM 0.2欧元的准确度来限制晕群。此外,在一套模拟上培训的GNN能够在用利用不同的代码的模拟上进行测试时保留其精度的一部分精度。 GNN的Pytorch几何实现在HTTPS://github.com/pablovd/halographnet上公开可用于github上
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译