Traffic jams occurring on highways cause increased travel time as well as increased fuel consumption and collisions. Traffic jams without a clear cause, such as an on-ramp or an accident, are called phantom traffic jams and are said to make up 50% of all traffic jams. They are the result of an unstable traffic flow caused by human driving behavior. Automating the longitudinal vehicle motion of only 5% of all cars in the flow can dissipate phantom traffic jams. However, driving automation introduces safety issues when human drivers need to take over the control from the automation. We investigated whether phantom traffic jams can be dissolved using haptic shared control. This keeps humans in the loop and thus bypasses the problem of humans' limited capacity to take over control, while benefiting from most advantages of automation. In an experiment with 24 participants in a driving simulator, we tested the effect of haptic shared control on the dynamics of traffic flow, and compared it with manual control and full automation. We also investigated the effect of two control types on participants' behavior during simulated silent automation failures. Results show that haptic shared control can help dissipating phantom traffic jams better than fully manual control but worse than full automation. We also found that haptic shared control reduces the occurrence of unsafe situations caused by silent automation failures compared to full automation. Our results suggest that haptic shared control can dissipate phantom traffic jams while preventing safety risks associated with full automation.
translated by 谷歌翻译
高速公路飞行员辅助已成为先进驾驶员辅助系统的前线。对安全和用户验收的提高要求正在呼吁在此类系统的开发过程中进行个性化。通过对横向对驾驶员的偏好进行了启发的启发,提出了一种个性化的公路导频辅助算法,其包括基于智能驱动器模型(IDM)的速度控制模型和考虑领先的车辆横向的新车道保持模型。移动。进行了模拟驾驶实验,以分析自由驾驶和行驶场景中的驾驶员凝视和泳道保持行为。驱动程序集中成两个驾驶样式组,指的是其受前方车辆影响的驾驶行为,然后优化每个特定主题驱动程序的个性化参数。通过基于移动基础模拟器的驾驶员实验验证了所提出的算法。结果表明,与未个性化算法相比,个性化公路试点算法可以显着降低心理工作量,并提高用户接受辅助功能。
translated by 谷歌翻译
随着连接和自动化车辆(CAV)技术的出现,越来越需要在使用这种技术的同时评估驾驶员行为。在第一研究中,在驾驶模拟器环境中引入了使用CAV技术的行人碰撞警告(PCW)系统,以评估驾驶员制动行为,在jaywalking行人的存在下。招募了来自各种各样的社会经济背景的93名参与者,为这项研究招募了该研究的,为此开设了哈尔的摩市中心的虚拟网络。眼睛跟踪装置还用于观察分心和头部运动。对数逻辑加速故障时间(AFT)分配模型用于该分析,计算减速时间;从行人变得可见的那一刻到达到最小速度的点,让行人通过。 PCW系统的存在显着影响减速时间和减速率,因为它增加了前者并减少了后者,这证明了该系统在提供有效驾驶机动方面的有效性,通过大大降低速度。进行了混蛋分析,以分析制动和加速的突然性。凝视分析表明,该系统能够吸引司机的注意力,因为大多数司机都注意到了显示的警告。驾驶员与路线和连接的车辆的熟悉程度降低了减速时间;由于雄性往往具有更长的减速时间,性别也会产生重大影响,即更多的时间来舒适地刹车并允许行人通过。
translated by 谷歌翻译
为连接和自动化车辆(CAVS)开发安全性和效率应用需要大量的测试和评估。在关键和危险情况下对这些系统运行的需求使他们的评估负担非常昂贵,可能危险且耗时。作为替代方案,研究人员试图使用仿真平台研究和评估其算法和设计。建模驾驶员或人类操作员在骑士或其他与他们相互作用的车辆中的行为是此类模拟的主要挑战之一。虽然为人类行为开发完美的模型是一项具有挑战性的任务和一个开放的问题,但我们展示了用于驾驶员行为的模拟器中当前模型的显着增强。在本文中,我们为混合运输系统提供了一个模拟平台,其中包括人类驱动和自动化车辆。此外,我们分解了人类驾驶任务,并提供了模拟大规模交通情况的模块化方法,从而可以彻底研究自动化和主动的安全系统。通过互连模块的这种表示形式提供了一个可以调节的人解剖系统,以代表不同类别的驱动程序。此外,我们分析了一个大型驾驶数据集以提取表达参数,以最好地描述不同的驾驶特性。最后,我们在模拟器中重新创建了类似密集的交通情况,并对各种人类特异性和系统特异性因素进行了彻底的分析,研究了它们对交通网络性能和安全性的影响。
translated by 谷歌翻译
由于在道路驾驶实验的安全性,成本和实验控制问题,模拟器是驾驶的行为和交互研究的重要工具。最先进的模拟器使用昂贵的360度投影系统,以确保视觉保真度,完整的视野和浸入。然而,可以使用基于虚拟现实(VR)的可视界面可高效地实现类似的视觉保真度。我们展示了Dreyevr,这是一个基于开源VR的驾驶模拟器平台,设计了具有行为和互动研究优先事项的驾驶模拟器平台。 Dreyevr(读取“驱动程序”)是基于虚幻发动机和Carla自主车辆模拟器,并且具有眼睛跟踪等功能,功能驾驶头部显示器(HUD)和车辆音频,定制可定义路由和流量方案,实验测井,重播功能,以及与ROS的兼容性。我们描述了部署此模拟器的硬件低于$ 5000 $ USD,比市售的模拟器更便宜。最后,我们描述了如何利用Dreyevr在示例场景中回答交互研究问题。
translated by 谷歌翻译
我们解决了由具有不同驱动程序行为的道路代理人填充的密集模拟交通环境中的自我车辆导航问题。由于其异构行为引起的代理人的不可预测性,这种环境中的导航是挑战。我们提出了一种新的仿真技术,包括丰富现有的交通模拟器,其具有与不同程度的侵略性程度相对应的行为丰富的轨迹。我们在驾驶员行为建模算法的帮助下生成这些轨迹。然后,我们使用丰富的模拟器培训深度加强学习(DRL)策略,包括一组高级车辆控制命令,并在测试时间使用此策略来执行密集流量的本地导航。我们的政策隐含地模拟了交通代理商之间的交互,并计算了自助式驾驶员机动,例如超速,超速,编织和突然道路变化的激进驾驶员演习的安全轨迹。我们增强的行为丰富的模拟器可用于生成由对应于不同驱动程序行为和流量密度的轨迹组成的数据集,我们的行为的导航方案可以与最先进的导航算法相结合。
translated by 谷歌翻译
然而,由于各种交通/道路结构方案以及人类驾驶员行为的长时间分布,自动驾驶的感应,感知和本地化取得了重大进展,因此,对于智能车辆来说,这仍然是一个持开放态度的挑战始终知道如何在有可用的传感 /感知 /本地化信息的道路上做出和执行最佳决定。在本章中,我们讨论了人工智能,更具体地说,强化学习如何利用运营知识和安全反射来做出战略性和战术决策。我们讨论了一些与强化学习解决方案的鲁棒性及其对自动驾驶驾驶策略的实践设计有关的具有挑战性的问题。我们专注于在高速公路上自动驾驶以及增强学习,车辆运动控制和控制屏障功能的整合,从而实现了可靠的AI驾驶策略,可以安全地学习和适应。
translated by 谷歌翻译
最近的自动驾驶汽车(AV)技术包括机器学习和概率技术,这些技术为传统验证和验证方法增添了重大复杂性。在过去的几年中,研究社区和行业已广泛接受基于方案的测试。由于它直接关注相关的关键道路情况,因此可以减少测试所需的努力。编码现实世界流量参与者的行为对于在基于方案的测试中有效评估正在测试的系统(SUT)至关重要。因此,有必要从现实世界数据中捕获方案参数,这些参数可以在模拟中实际建模。本文的主要重点是确定有意义的参数列表,这些参数可以充分建模现实世界改变场景。使用这些参数,可以构建一个参数空间,能够为AV测试有效地生成一系列具有挑战性的方案。我们使用均方根误差(RMSE)验证我们的方法,以比较使用所提出的参数与现实世界轨迹数据生成的方案。除此之外,我们还证明,在一些场景参数中增加一些干扰可以产生不同的场景,并利用对责任敏感的安全(RSS)度量来衡量场景的风险。
translated by 谷歌翻译
我们考虑在微观级别的坡道计量,但受车辆安全限制的约束。交通网络由带有多个在越野和外坡道的环路抽象。车辆到达坡道的到达时间及其目的地外坡道是由外源随机过程建模的。一旦车辆从坡道上释放出来,如果没有另一辆车阻塞,它就会加速自由流速。一旦它靠近另一辆车,便会采用安全的行为。车辆到达目的地外坡道后,车辆将退出交通网络。我们设计流量响应的坡道计量策略,以最大程度地提高网络的饱和区域。策略的饱和区域定义为一组需求,即到达率和路由矩阵,所有坡道的队列长度都在预期中保持限制。提出的坡道计量策略是在同步循环下运行的,在此期间,坡道在周期开始时不会释放更多的车辆长度。我们提供三个策略,分别在周期结束时分别暂停每个坡度(i)暂停时间间隔,或(ii)在周期内调节释放率,或(iii)采用保守的安全性在周期中释放的标准。但是,所有政策都不需要有关需求的信息。这些策略的饱和区域的特征是研究诱导的马尔可夫链的随机稳定性,当所有坡道的合并速度等于自由流速时,被证明是最大的。提供模拟以说明政策的性能。
translated by 谷歌翻译
自主系统(AS)越来越多地提出或在安全关键(SC)应用中使用,例如公路车辆。许多这样的系统利用复杂的传感器套件和处理来提供场景理解,从而使“决策”(例如路径计划)提供了信息。传感器处理通常利用机器学习(ML),并且必须在具有挑战性的环境中工作,此外,ML算法具有已知的局限性,例如,对象分类中错误的负面因素或假阳性的可能性。为常规SC系统开发的完善的安全分析方法与AS使用的AS,ML或传感系统没有很好的匹配。本文提出了适应良好的安全分析方法的适应,以解决AS的传感系统的细节,包括解决环境效应和ML的潜在故障模式,并为选择特定的指南或提示集提供了理由。安全分析。它继续展示了如何使用分析结果来告知AS系统的设计和验证,并通过对移动机器人进行部分分析来说明新方法。本文中的插图主要基于光学传感,但是本文讨论了该方法对其他感应方式的适用性及其在更广泛的安全过程中的作用,以解决AS的整体功能
translated by 谷歌翻译
模拟在有效评估自动驾驶汽车方面发挥了重要作用。现有方法主要依赖于基于启发式的模拟,在该模拟中,交通参与者遵循某些无法产生复杂人类行为的人类编码的规则。因此,提出了反应性仿真概念,以通过利用现实世界数据来弥合模拟和现实世界交通情况之间的人类行为差距。但是,这些反应性模型可以在模拟几个步骤后轻松地产生不合理的行为,我们将模型视为失去其稳定性。据我们所知,没有任何工作明确讨论并分析了反应性仿真框架的稳定性。在本文中,我们旨在对反应性模拟进行彻底的稳定性分析,并提出一种增强稳定性的解决方案。具体而言,我们首先提出了一个新的反应模拟框架,在其中我们发现模拟状态序列的平滑度和一致性是稳定性的关键因素。然后,我们将运动学媒介物模型纳入框架中,以提高反应性模拟的闭环稳定性。此外,在本文中提出了一些新颖的指标,以更好地分析模拟性能。
translated by 谷歌翻译
Traditional planning and control methods could fail to find a feasible trajectory for an autonomous vehicle to execute amongst dense traffic on roads. This is because the obstacle-free volume in spacetime is very small in these scenarios for the vehicle to drive through. However, that does not mean the task is infeasible since human drivers are known to be able to drive amongst dense traffic by leveraging the cooperativeness of other drivers to open a gap. The traditional methods fail to take into account the fact that the actions taken by an agent affect the behaviour of other vehicles on the road. In this work, we rely on the ability of deep reinforcement learning to implicitly model such interactions and learn a continuous control policy over the action space of an autonomous vehicle. The application we consider requires our agent to negotiate and open a gap in the road in order to successfully merge or change lanes. Our policy learns to repeatedly probe into the target road lane while trying to find a safe spot to move in to. We compare against two model-predictive control-based algorithms and show that our policy outperforms them in simulation.
translated by 谷歌翻译
自动驾驶汽车的一个主要挑战是安全,平稳地与其他交通参与者进行互动。处理此类交通交互的一种有希望的方法是为自动驾驶汽车配备与感知的控制器(IACS)。这些控制器预测,周围人类驾驶员将如何根据驾驶员模型对自动驾驶汽车的行为做出响应。但是,很少验证IACS中使用的驱动程序模型的预测有效性,这可能会限制IACS在简单的模拟环境之外的交互功能。在本文中,我们认为,除了评估IAC的互动能力外,还应在自然的人类驾驶行为上验证其潜在的驱动器模型。我们为此验证提出了一个工作流程,其中包括基于方案的数据提取和基于人为因素文献的两阶段(战术/操作)评估程序。我们在一项案例研究中证明了该工作流程,该案例研究对现有IAC复制的基于反向的基于学习的驱动程序模型。该模型仅在40%的预测中显示出正确的战术行为。该模型的操作行为与观察到的人类行为不一致。案例研究表明,有原则的评估工作流程是有用和需要的。我们认为,我们的工作流将支持为将来的自动化车辆开发适当的驾驶员模型。
translated by 谷歌翻译
无罪化的交叉路口驾驶对自动车辆有挑战性。为了安全有效的性能,应考虑相互作用的车辆的多样化和动态行为。基于游戏理论框架,提出了一种用于无罪交叉口的自动决策的人类收益设计方法。展望理论被引入将客观碰撞风险映射到主观驾驶员收益,并且驾驶风格可以量化为安全和速度之间的权衡。为了考虑相互作用的动态,进一步引入了概率模型来描述司机的加速趋势。仿真结果表明,该决策算法可以描述极限情况下双车交互的动态过程。统一采样案例模拟的统计数据表明,安全互动的成功率达到98%,而且还可以保证速度效率。在四臂交叉路口的四车辆交互情景中进一步应用并验证了所提出的方法。
translated by 谷歌翻译
决策对于自动驾驶的车道变化至关重要。强化学习(RL)算法旨在确定各种情况下的行为价值,因此它们成为解决决策问题的有前途的途径。但是,运行时安全性较差,阻碍了基于RL的决策策略,从实践中进行了复杂的驾驶任务。为了解决这个问题,本文将人类的示范纳入了基于RL的决策策略中。人类受试者在驾驶模拟器中做出的决定被视为安全的示范,将其存储到重播缓冲液中,然后用来增强RL的训练过程。建立了一个复杂的车道变更任务,以检查开发策略的性能。仿真结果表明,人类的演示可以有效地提高RL决策的安全性。而拟议的策略超过了其他基于学习的决策策略,就多种驾驶表演而言。
translated by 谷歌翻译
自动驾驶汽车是一项不断发展的技术,旨在通过自动操作从车道变更到超车来提高安全性,可访问性,效率和便利性。超车是自动驾驶汽车最具挑战性的操作之一,当前的自动超车技术仅限于简单情况。本文研究了如何通过允许动作流产来提高自主超车的安全性。我们提出了一个基于深层Q网络的决策过程,以确定是否以及何时需要中止超车的操作。拟议的算法在与交通情况不同的模拟中进行了经验评估,这表明所提出的方法可以改善超车手动过程中的安全性。此外,使用自动班车Iseauto在现实世界实验中证明了该方法。
translated by 谷歌翻译
一般而言,融合是人类驱动因素和自治车辆的具有挑战性的任务,特别是在密集的交通中,因为合并的车辆通常需要与其他车辆互动以识别或创造间隙并安全合并。在本文中,我们考虑了强制合并方案的自主车辆控制问题。我们提出了一种新的游戏 - 理论控制器,称为领导者跟随者游戏控制器(LFGC),其中自主EGO车辆和其他具有先验不确定驾驶意图的车辆之间的相互作用被建模为部分可观察到的领导者 - 跟随游戏。 LFGC估计基于观察到的轨迹的其他车辆在线在线,然后预测其未来的轨迹,并计划使用模型预测控制(MPC)来同时实现概率保证安全性和合并目标的自我车辆自己的轨迹。为了验证LFGC的性能,我们在模拟和NGSIM数据中测试它,其中LFGC在合并中展示了97.5%的高成功率。
translated by 谷歌翻译
行人在场的运动控制算法对于开发安全可靠的自动驾驶汽车(AV)至关重要。传统运动控制算法依赖于手动设计的决策政策,这些政策忽略了AV和行人之间的相互作用。另一方面,深度强化学习的最新进展允许在没有手动设计的情况下自动学习政策。为了解决行人在场的决策问题,作者介绍了一个基于社会价值取向和深入强化学习(DRL)的框架,该框架能够以不同的驾驶方式生成决策政策。该政策是在模拟环境中使用最先进的DRL算法培训的。还引入了适合DRL训练的新型计算效率的行人模型。我们执行实验以验证我们的框架,并对使用两种不同的无模型深钢筋学习算法获得的策略进行了比较分析。模拟结果表明,开发的模型如何表现出自然的驾驶行为,例如短暂的驾驶行为,以促进行人的穿越。
translated by 谷歌翻译
Accomplishing safe and efficient driving is one of the predominant challenges in the controller design of connected automated vehicles (CAVs). It is often more convenient to address these goals separately and integrate the resulting controllers. In this study, we propose a controller integration scheme to fuse performance-based controllers and safety-oriented controllers safely for the longitudinal motion of a CAV. The resulting structure is compatible with a large class of controllers, and offers flexibility to design each controller individually without affecting the performance of the others. We implement the proposed safe integration scheme on a connected automated truck using an optimal-in-energy controller and a safety-oriented connected cruise controller. We validate the premise of the safe integration through experiments with a full-scale truck in two scenarios: a controlled experiment on a test track and a real-world experiment on a public highway. In both scenarios, we achieve energy efficient driving without violating safety.
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译