为连接和自动化车辆(CAVS)开发安全性和效率应用需要大量的测试和评估。在关键和危险情况下对这些系统运行的需求使他们的评估负担非常昂贵,可能危险且耗时。作为替代方案,研究人员试图使用仿真平台研究和评估其算法和设计。建模驾驶员或人类操作员在骑士或其他与他们相互作用的车辆中的行为是此类模拟的主要挑战之一。虽然为人类行为开发完美的模型是一项具有挑战性的任务和一个开放的问题,但我们展示了用于驾驶员行为的模拟器中当前模型的显着增强。在本文中,我们为混合运输系统提供了一个模拟平台,其中包括人类驱动和自动化车辆。此外,我们分解了人类驾驶任务,并提供了模拟大规模交通情况的模块化方法,从而可以彻底研究自动化和主动的安全系统。通过互连模块的这种表示形式提供了一个可以调节的人解剖系统,以代表不同类别的驱动程序。此外,我们分析了一个大型驾驶数据集以提取表达参数,以最好地描述不同的驾驶特性。最后,我们在模拟器中重新创建了类似密集的交通情况,并对各种人类特异性和系统特异性因素进行了彻底的分析,研究了它们对交通网络性能和安全性的影响。
translated by 谷歌翻译
在不久的将来,自动驾驶的开发将变得更加复杂,因为这些车辆不仅会依靠自己的传感器,而且还与其他车辆和基础设施进行交流以合作和改善驾驶体验。为此,需要进行一些研究领域,例如机器人技术,沟通和控制,以实施未来的方法。但是,每个领域首先关注其组件的开发,而组件可能对整个系统产生的影响仅在后期考虑。在这项工作中,我们集成了机器人技术,通信和控制的仿真工具,即ROS2,Omnet ++和MATLAB来评估合作驾驶场景。可以利用该框架使用指定工具来开发各个组件,而最终评估可以在完整的情况下进行,从而可以模拟高级多机器人应用程序以进行合作驾驶。此外,它可以用于集成其他工具,因为集成以模块化方式完成。我们通过在合作自适应巡航控制(CACC)和ETSI ITS-G5通信体系结构下展示排量场景来展示该框架。此外,我们比较了理论分析和实际案例研究之间控制器性能的差异。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
Vehicle-to-Everything (V2X) communication has been proposed as a potential solution to improve the robustness and safety of autonomous vehicles by improving coordination and removing the barrier of non-line-of-sight sensing. Cooperative Vehicle Safety (CVS) applications are tightly dependent on the reliability of the underneath data system, which can suffer from loss of information due to the inherent issues of their different components, such as sensors failures or the poor performance of V2X technologies under dense communication channel load. Particularly, information loss affects the target classification module and, subsequently, the safety application performance. To enable reliable and robust CVS systems that mitigate the effect of information loss, we proposed a Context-Aware Target Classification (CA-TC) module coupled with a hybrid learning-based predictive modeling technique for CVS systems. The CA-TC consists of two modules: A Context-Aware Map (CAM), and a Hybrid Gaussian Process (HGP) prediction system. Consequently, the vehicle safety applications use the information from the CA-TC, making them more robust and reliable. The CAM leverages vehicles path history, road geometry, tracking, and prediction; and the HGP is utilized to provide accurate vehicles' trajectory predictions to compensate for data loss (due to communication congestion) or sensor measurements' inaccuracies. Based on offline real-world data, we learn a finite bank of driver models that represent the joint dynamics of the vehicle and the drivers' behavior. We combine offline training and online model updates with on-the-fly forecasting to account for new possible driver behaviors. Finally, our framework is validated using simulation and realistic driving scenarios to confirm its potential in enhancing the robustness and reliability of CVS systems.
translated by 谷歌翻译
两栖地面汽车将飞行和驾驶模式融合在一起,以实现更灵活的空中行动能力,并且最近受到了越来越多的关注。通过分析现有的两栖车辆,我们强调了在复杂的三维城市运输系统中有效使用两栖车辆的自动驾驶功能。我们审查并总结了现有两栖车辆设计中智能飞行驾驶的关键促成技术,确定主要的技术障碍,并提出潜在的解决方案,以实现未来的研究和创新。本文旨在作为研究和开发智能两栖车辆的指南,以实现未来的城市运输。
translated by 谷歌翻译
高速公路飞行员辅助已成为先进驾驶员辅助系统的前线。对安全和用户验收的提高要求正在呼吁在此类系统的开发过程中进行个性化。通过对横向对驾驶员的偏好进行了启发的启发,提出了一种个性化的公路导频辅助算法,其包括基于智能驱动器模型(IDM)的速度控制模型和考虑领先的车辆横向的新车道保持模型。移动。进行了模拟驾驶实验,以分析自由驾驶和行驶场景中的驾驶员凝视和泳道保持行为。驱动程序集中成两个驾驶样式组,指的是其受前方车辆影响的驾驶行为,然后优化每个特定主题驱动程序的个性化参数。通过基于移动基础模拟器的驾驶员实验验证了所提出的算法。结果表明,与未个性化算法相比,个性化公路试点算法可以显着降低心理工作量,并提高用户接受辅助功能。
translated by 谷歌翻译
通过改善安全性,效率和移动性,自动车辆(AVS)的快速发展持有运输系统的巨大潜力。然而,通过AVS被采用的这些影响的进展尚不清楚。众多技术挑战是出于分析自治的部分采用:部分控制和观察,多车辆互动以及现实世界网络代表的纯粹场景的目标。本文研究了近期AV影响,研究了深度加强学习(RL)在低AV采用政权中克服了这些挑战的适用性。提出了一个模块化学习框架,它利用深rl来解决复杂的交通动态。模块组成用于捕获常见的交通现象(停止和转运交通拥堵,车道更改,交叉点)。在系统级速度方面,发现了学习的控制法则改善人类驾驶绩效,高达57%,只有4-7%的AVS。此外,在单线交通中,发现只有局部观察的小型神经网络控制规律消除了停止和转移的流量 - 超过所有已知的基于模型的控制器,以实现近乎最佳性能 - 并概括为OUT-分销交通密度。
translated by 谷歌翻译
This paper describes Waymo's Collision Avoidance Testing (CAT) methodology: a scenario-based testing method that evaluates the safety of the Waymo Driver Automated Driving Systems' (ADS) intended functionality in conflict situations initiated by other road users that require urgent evasive maneuvers. Because SAE Level 4 ADS are responsible for the dynamic driving task (DDT), when engaged, without immediate human intervention, evaluating a Level 4 ADS using scenario-based testing is difficult due to the potentially infinite number of operational scenarios in which hazardous situations may unfold. To that end, in this paper we first describe the safety test objectives for the CAT methodology, including the collision and serious injury metrics and the reference behavior model representing a non-impaired eyes on conflict human driver used to form an acceptance criterion. Afterward, we introduce the process for identifying potentially hazardous situations from a combination of human data, ADS testing data, and expert knowledge about the product design and associated Operational Design Domain (ODD). The test allocation and execution strategy is presented next, which exclusively utilize simulations constructed from sensor data collected on a test track, real-world driving, or from simulated sensor data. The paper concludes with the presentation of results from applying CAT to the fully autonomous ride-hailing service that Waymo operates in San Francisco, California and Phoenix, Arizona. The iterative nature of scenario identification, combined with over ten years of experience of on-road testing, results in a scenario database that converges to a representative set of responder role scenarios for a given ODD. Using Waymo's virtual test platform, which is calibrated to data collected as part of many years of ADS development, the CAT methodology provides a robust and scalable safety evaluation.
translated by 谷歌翻译
自动驾驶在过去十年中取得了重大的研究和发展中的重要里程碑。在道路上的自动车辆部署时,对该领域的兴趣越来越令人兴趣,承诺更安全,更生态的运输系统。随着计算强大的人工智能(AI)技术的兴起,自动车辆可以用高精度感测它们的环境,进行安全的实时决策,并在没有人类干预的情况下更可靠地运行。然而,在现有技术中,人类智能决策通常不可能理解,这种缺陷阻碍了这种技术在社会上可接受。因此,除了制造安全的实时决策之外,自治车辆的AI系统还需要解释如何构建这些决策,以便在许多司法管辖区兼容监管。我们的研究在开发可解释的人工智能(XAI)的自治车辆方法上阐明了全面的光芒。特别是,我们做出以下贡献。首先,我们在最先进的自主车辆行业的解释方面彻底概述了目前的差距。然后,我们显示了该领域的解释和解释接收器的分类。第三,我们为端到端自主驾驶系统的架构提出了一个框架,并证明了Xai在调试和调节这些系统中的作用。最后,作为未来的研究方向,我们提供了XAI自主驾驶方法的实地指南,可以提高运营安全性和透明度,以实现监管机构,制造商和所有参与利益相关者的公共批准。
translated by 谷歌翻译
在过去的十年中,自动驾驶航空运输车辆引起了重大兴趣。这是通过空中操纵器和新颖的握手的技术进步来实现这一目标的。此外,改进的控制方案和车辆动力学能够更好地对有效载荷进行建模和改进的感知算法,以检测无人机(UAV)环境中的关键特征。在这项调查中,对自动空中递送车辆的技术进步和开放研究问题进行了系统的审查。首先,详细讨论了各种类型的操纵器和握手,以及动态建模和控制方法。然后,讨论了降落在静态和动态平台上的。随后,诸如天气状况,州估计和避免碰撞之类的风险以确保安全过境。最后,调查了交付的UAV路由,该路由将主题分为两个领域:无人机操作和无人机合作操作。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
Multi-modal fusion is a basic task of autonomous driving system perception, which has attracted many scholars' interest in recent years. The current multi-modal fusion methods mainly focus on camera data and LiDAR data, but pay little attention to the kinematic information provided by the bottom sensors of the vehicle, such as acceleration, vehicle speed, angle of rotation. These information are not affected by complex external scenes, so it is more robust and reliable. In this paper, we introduce the existing application fields of vehicle bottom information and the research progress of related methods, as well as the multi-modal fusion methods based on bottom information. We also introduced the relevant information of the vehicle bottom information data set in detail to facilitate the research as soon as possible. In addition, new future ideas of multi-modal fusion technology for autonomous driving tasks are proposed to promote the further utilization of vehicle bottom information.
translated by 谷歌翻译
Reliable and efficient validation technologies are critical for the recent development of multi-vehicle cooperation and vehicle-road-cloud integration. In this paper, we introduce our miniature experimental platform, Mixed Cloud Control Testbed (MCCT), developed based on a new notion of Mixed Digital Twin (mixedDT). Combining Mixed Reality with Digital Twin, mixedDT integrates the virtual and physical spaces into a mixed one, where physical entities coexist and interact with virtual entities via their digital counterparts. Under the framework of mixedDT, MCCT contains three major experimental platforms in the physical, virtual and mixed spaces respectively, and provides a unified access for various human-machine interfaces and external devices such as driving simulators. A cloud unit, where the mixed experimental platform is deployed, is responsible for fusing multi-platform information and assigning control instructions, contributing to synchronous operation and real-time cross-platform interaction. Particularly, MCCT allows for multi-vehicle coordination composed of different multi-source vehicles (\eg, physical vehicles, virtual vehicles and human-driven vehicles). Validations on vehicle platooning demonstrate the flexibility and scalability of MCCT.
translated by 谷歌翻译
汽车行业在过去几十年中见证了越来越多的发展程度;从制造手动操作车辆到具有高自动化水平的制造车辆。随着近期人工智能(AI)的发展,汽车公司现在雇用BlackBox AI模型来使车辆能够感知其环境,并使人类少或没有输入的驾驶决策。希望能够在商业规模上部署自治车辆(AV),通过社会接受AV成为至关重要的,并且可能在很大程度上取决于其透明度,可信度和遵守法规的程度。通过为AVS行为的解释提供对这些接受要求的遵守对这些验收要求的评估。因此,解释性被视为AVS的重要要求。 AV应该能够解释他们在他们运作的环境中的“见到”。在本文中,我们对可解释的自动驾驶的现有工作体系进行了全面的调查。首先,我们通过突出显示并强调透明度,问责制和信任的重要性来开放一个解释的动机;并审查与AVS相关的现有法规和标准。其次,我们识别并分类了参与发展,使用和监管的不同利益相关者,并引出了AV的解释要求。第三,我们对以前的工作进行了严格的审查,以解释不同的AV操作(即,感知,本地化,规划,控制和系统管理)。最后,我们确定了相关的挑战并提供建议,例如AV可解释性的概念框架。该调查旨在提供对AVS中解释性感兴趣的研究人员所需的基本知识。
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
最近,自主驾驶社会上有许多进展,吸引了学术界和工业的很多关注。然而,现有的作品主要专注于汽车,自动驾驶卡车算法和模型仍然需要额外的开发。在本文中,我们介绍了智能自动驾驶卡车系统。我们所呈现的系统由三个主要组成部分组成,1)一个现实的交通仿真模块,用于在测试场景中产生现实的交通流量,2)设计和评估了在现实世界部署中模仿实际卡车响应的高保真卡车模型,3 )具有基于学习的决策算法和多模轨迹策划仪的智能计划模块,考虑到卡车的约束,道路斜率变化和周围的交通流量。我们为每个组分单独提供定量评估,以证明每个部件的保真度和性能。我们还将我们的建议系统部署在真正的卡车上,并进行真实的世界实验,表明我们的系统能力缓解了SIM-TO-REAL差距。我们的代码可以在https://github.com/inceptioresearch/iits提供
translated by 谷歌翻译
具有自动化和连通性的赋予,连接和自动化的车辆旨在成为合作驾驶自动化的革命性推动者。然而,骑士需要对周围环境的高保真感知信息,但从各种车载传感器以及车辆到所有的通信(v2x)通信中都可以昂贵。因此,通过具有成本效益的平台基于高保真传感器的真实感知信息对于启用与CDA相关的研究(例如合作决策或控制)至关重要。大多数针对CAVS的最先进的交通模拟研究都通过直接呼吁对象的内在属性来依赖情况 - 意识信息,这阻碍了CDA算法评估的可靠性和保真度。在这项研究中,\ textit {网络移动镜(CMM)}共模拟平台设计用于通过提供真实感知信息来启用CDA。 \ textit {cmm}共模拟平台可以通过高保真传感器感知系统和具有实时重建系统的网络世界模仿现实世界。具体而言,现实世界的模拟器主要负责模拟交通环境,传感器以及真实的感知过程。 Mirror-World Simulator负责重建对象,并将其信息作为模拟器的内在属性,以支持CD​​A算法的开发和评估。为了说明拟议的共模拟平台的功能,将基于路边的激光雷达的车辆感知系统原型作为研究案例。特定的流量环境和CDA任务是为实验设计的,其结果得到了证明和分析以显示平台的性能。
translated by 谷歌翻译
本文介绍了一种用于自主车辆的耦合,神经网络辅助纵向巡航和横向路径跟踪控制器,具有模型不确定性和经历未知的外部干扰。使用反馈误差学习机制,采用利用自适应径向基函数(RBF)神经网络的反向车辆动态学习方案,称为扩展的最小资源分配网络(EMRAN)。 EMRAN使用扩展的卡尔曼滤波器进行在线学习和体重更新,并采用了一种越来越多的/修剪策略,用于维护紧凑的网络,以便更容易地实现。在线学习算法处理参数化不确定性,并消除了未知干扰在道路上的影响。结合用于提高泛化性能的自我调节学习方案,所提出的EMRAN辅助控制架构辅助基本PID巡航和斯坦利路径跟踪控制器以耦合的形式。与传统的PID和斯坦利控制器相比,其对各种干扰和不确定性的性能和鲁棒性以及与基于模糊的PID控制器和主动扰动抑制控制(ADRC)方案的比较。慢速和高速场景介绍了仿真结果。根均线(RMS)和最大跟踪误差清楚地表明提出的控制方案在未知环境下实现自动车辆中更好的跟踪性能的有效性。
translated by 谷歌翻译
随着自动驾驶汽车(AV)开发的发展,对环境中乘客和代理商的安全性的担忧已经上升。涉及自主控制车辆的每个现实世界交通碰撞都使这种担忧加剧了。开源自主驾驶实现显示了具有复杂相互依赖任务的软件体系结构,这很大程度上依赖于机器学习和深层神经网络(DNN),这些任务容易受到非确定性故障和角落案例的影响。这些复杂的子系统共同履行AV的任务,同时还保持安全性。尽管在提高对这些系统的经验可靠性和信心方面正在做出重大改进,但DNN验证的固有局限性在提供AV中提供确定性安全保证方面却引起了无法克服的挑战。我们提出了协同冗余(SR),这是一种用于复杂网络物理系统的安全架构,例如AV。 SR通过将系统的任务和安全任务解耦来提供可验证的安全保证。在独立履行其主要角色的同时,部分功能多余的任务和安全任务能够相互帮助,从而协同改善合并的系统。协同安全层仅使用可验证且可分析的软件来完成其任务。与任务层的密切协调可以更轻松,更早地检测系统中的紧急故障。 SR简化了任务层的优化目标并改进了其设计。 SR提供了高性能的安全部署,尽管本质上无法验证的机器学习软件。在这项工作中,我们首先介绍SR体系结构的设计和功能,然后评估解决方案的功效,重点关注AV中障碍物存在故障的关键问题。
translated by 谷歌翻译