一般而言,融合是人类驱动因素和自治车辆的具有挑战性的任务,特别是在密集的交通中,因为合并的车辆通常需要与其他车辆互动以识别或创造间隙并安全合并。在本文中,我们考虑了强制合并方案的自主车辆控制问题。我们提出了一种新的游戏 - 理论控制器,称为领导者跟随者游戏控制器(LFGC),其中自主EGO车辆和其他具有先验不确定驾驶意图的车辆之间的相互作用被建模为部分可观察到的领导者 - 跟随游戏。 LFGC估计基于观察到的轨迹的其他车辆在线在线,然后预测其未来的轨迹,并计划使用模型预测控制(MPC)来同时实现概率保证安全性和合并目标的自我车辆自己的轨迹。为了验证LFGC的性能,我们在模拟和NGSIM数据中测试它,其中LFGC在合并中展示了97.5%的高成功率。
translated by 谷歌翻译
基于神经网络的驾驶规划师在改善自动驾驶的任务绩效方面表现出了巨大的承诺。但是,确保具有基于神经网络的组件的系统的安全性,尤其是在密集且高度交互式的交通环境中,这是至关重要的,但又具有挑战性。在这项工作中,我们为基于神经网络的车道更改提出了一个安全驱动的互动计划框架。为了防止过度保守计划,我们确定周围车辆的驾驶行为并评估其侵略性,然后以互动方式相应地适应了计划的轨迹。如果在预测的最坏情况下,即使存在安全的逃避轨迹,则自我车辆可以继续改变车道;否则,它可以停留在当前的横向位置附近或返回原始车道。我们通过广泛而全面的实验环境以及在自动驾驶汽车公司收集的现实情况下进行了广泛的模拟,定量证明了计划者设计的有效性及其优于基线方法的优势。
translated by 谷歌翻译
安全可靠的自治解决方案是下一代智能运输系统的关键组成部分。这种系统中的自动驾驶汽车必须实时考虑复杂而动态的驾驶场景,并预测附近驾驶员的行为。人类驾驶行为非常细微,对个别交通参与者具有特殊性。例如,在合并车辆的情况下,驾驶员可能会显示合作或非合作行为。这些行为必须估算并纳入安全有效驾驶的计划过程中。在这项工作中,我们提出了一个框架,用于估计高速公路上驾驶员的合作水平,并计划将动作与驾驶员的潜在行为合并。潜在参数估计问题使用粒子滤波器解决,以近似合作级别的概率分布。包括潜在状态估算的部分可观察到的马尔可夫决策过程(POMDP)在线解决,以提取合并车辆的政策。我们在高保真汽车模拟器中评估我们的方法,以对潜在状态不可知或依赖于$ \ textit {a先验{先验} $假设。
translated by 谷歌翻译
Traditional planning and control methods could fail to find a feasible trajectory for an autonomous vehicle to execute amongst dense traffic on roads. This is because the obstacle-free volume in spacetime is very small in these scenarios for the vehicle to drive through. However, that does not mean the task is infeasible since human drivers are known to be able to drive amongst dense traffic by leveraging the cooperativeness of other drivers to open a gap. The traditional methods fail to take into account the fact that the actions taken by an agent affect the behaviour of other vehicles on the road. In this work, we rely on the ability of deep reinforcement learning to implicitly model such interactions and learn a continuous control policy over the action space of an autonomous vehicle. The application we consider requires our agent to negotiate and open a gap in the road in order to successfully merge or change lanes. Our policy learns to repeatedly probe into the target road lane while trying to find a safe spot to move in to. We compare against two model-predictive control-based algorithms and show that our policy outperforms them in simulation.
translated by 谷歌翻译
我们解决了由具有不同驱动程序行为的道路代理人填充的密集模拟交通环境中的自我车辆导航问题。由于其异构行为引起的代理人的不可预测性,这种环境中的导航是挑战。我们提出了一种新的仿真技术,包括丰富现有的交通模拟器,其具有与不同程度的侵略性程度相对应的行为丰富的轨迹。我们在驾驶员行为建模算法的帮助下生成这些轨迹。然后,我们使用丰富的模拟器培训深度加强学习(DRL)策略,包括一组高级车辆控制命令,并在测试时间使用此策略来执行密集流量的本地导航。我们的政策隐含地模拟了交通代理商之间的交互,并计算了自助式驾驶员机动,例如超速,超速,编织和突然道路变化的激进驾驶员演习的安全轨迹。我们增强的行为丰富的模拟器可用于生成由对应于不同驱动程序行为和流量密度的轨迹组成的数据集,我们的行为的导航方案可以与最先进的导航算法相结合。
translated by 谷歌翻译
这项工作研究了以下假设:与人类驾驶状态的部分可观察到的马尔可夫决策过程(POMDP)计划可以显着提高自动高速公路驾驶的安全性和效率。我们在模拟场景中评估了这一假设,即自动驾驶汽车必须在快速连续中安全执行三个车道变化。通过观测扩大(POMCPOW)算法,通过部分可观察到的蒙特卡洛计划获得了近似POMDP溶液。这种方法的表现优于过度自信和保守的MDP基准,匹配或匹配效果优于QMDP。相对于MDP基准,POMCPOW通常将不安全情况的速率降低了一半或将成功率提高50%。
translated by 谷歌翻译
然而,由于各种交通/道路结构方案以及人类驾驶员行为的长时间分布,自动驾驶的感应,感知和本地化取得了重大进展,因此,对于智能车辆来说,这仍然是一个持开放态度的挑战始终知道如何在有可用的传感 /感知 /本地化信息的道路上做出和执行最佳决定。在本章中,我们讨论了人工智能,更具体地说,强化学习如何利用运营知识和安全反射来做出战略性和战术决策。我们讨论了一些与强化学习解决方案的鲁棒性及其对自动驾驶驾驶策略的实践设计有关的具有挑战性的问题。我们专注于在高速公路上自动驾驶以及增强学习,车辆运动控制和控制屏障功能的整合,从而实现了可靠的AI驾驶策略,可以安全地学习和适应。
translated by 谷歌翻译
Robots such as autonomous vehicles and assistive manipulators are increasingly operating in dynamic environments and close physical proximity to people. In such scenarios, the robot can leverage a human motion predictor to predict their future states and plan safe and efficient trajectories. However, no model is ever perfect -- when the observed human behavior deviates from the model predictions, the robot might plan unsafe maneuvers. Recent works have explored maintaining a confidence parameter in the human model to overcome this challenge, wherein the predicted human actions are tempered online based on the likelihood of the observed human action under the prediction model. This has opened up a new research challenge, i.e., \textit{how to compute the future human states online as the confidence parameter changes?} In this work, we propose a Hamilton-Jacobi (HJ) reachability-based approach to overcome this challenge. Treating the confidence parameter as a virtual state in the system, we compute a parameter-conditioned forward reachable tube (FRT) that provides the future human states as a function of the confidence parameter. Online, as the confidence parameter changes, we can simply query the corresponding FRT, and use it to update the robot plan. Computing parameter-conditioned FRT corresponds to an (offline) high-dimensional reachability problem, which we solve by leveraging recent advances in data-driven reachability analysis. Overall, our framework enables online maintenance and updates of safety assurances in human-robot interaction scenarios, even when the human prediction model is incorrect. We demonstrate our approach in several safety-critical autonomous driving scenarios, involving a state-of-the-art deep learning-based prediction model.
translated by 谷歌翻译
Prior work has looked at applying reinforcement learning and imitation learning approaches to autonomous driving scenarios, but either the safety or the efficiency of the algorithm is compromised. With the use of control barrier functions embedded into the reinforcement learning policy, we arrive at safe policies to optimize the performance of the autonomous driving vehicle. However, control barrier functions need a good approximation of the model of the car. We use probabilistic control barrier functions as an estimate of the model uncertainty. The algorithm is implemented as an online version in the CARLA (Dosovitskiy et al., 2017) Simulator and as an offline version on a dataset extracted from the NGSIM Database. The proposed algorithm is not just a safe ramp merging algorithm but a safe autonomous driving algorithm applied to address ramp merging on highways.
translated by 谷歌翻译
人类行为的不确定性对拥挤的城市环境中的自动驾驶构成了重大挑战。部分可观察到的马尔可夫决策过程(POMDP)为不确定性下的计划提供了一个原则的框架,通常利用蒙特卡洛抽样来实现在线绩效进行复杂的任务。但是,抽样还通过潜在缺失关键事件引起了安全问题。为了解决这个问题,我们提出了一种新的算法,学习对驾驶行为(领导者)的关注,这些算法在计划过程中学习了批判性人类行为。领导者学习了一个神经网络生成器,以实时情况下对人类行为的关注。它将注意力集成到信仰空间计划者中,使用重要性抽样来偏向关键事件。为了训练该算法,我们让注意力生成器和计划者组成了最小游戏。通过解决Min-Max游戏,领导者学会了无需人类标签即可执行风险意识的计划。
translated by 谷歌翻译
预计自动驾驶技术不仅可以提高移动性和道路安全性,还可以提高能源效率的益处。在可预见的未来,自动车辆(AVS)将在与人机车辆共享的道路上运行。为了保持安全性和活力,同时尽量减少能耗,AV规划和决策过程应考虑自动自动驾驶车辆与周围的人机车辆之间的相互作用。在本章中,我们描述了一种通过基于认知层次理论和强化学习开发人的驾驶员行为建模来开发共用道路上的节能自主驾驶政策的框架。
translated by 谷歌翻译
随着越来越多的自主车辆(AVS)正在公共道路上部署,为他们设计的社会兼容行为变得越来越重要。为了产生安全和有效的行动,AVS不仅需要预测其他交通参与者的未来行为,而且需要意识到与这种行为预测相关的不确定性。在本文中,我们提出了一个不确定的综合预测和规划(UAPP)框架。它允许AVS推断在线其他道路用户的特征,并不仅可以为自己的奖励提供优化的行为,也可以对他人提供礼貌,以及他们对预测不确定性的信心。我们首先提出了礼貌和信心的定义。基于此,探讨了对互动驾驶场景中AVS行为的影响。此外,我们通过将产生的行为与地面真理进行比较来评估自然主义人类驾驶数据的提议算法。结果表明,在线推断可以显着提高所产生行为的人类肖像。此外,我们发现人类的司机对他人表示非常适合那些没有权利的人。我们还发现,这种驾驶偏好在不同的文化中有所不同。
translated by 谷歌翻译
游戏理论运动计划者是控制多个高度交互式机器人系统的有效解决方案。大多数现有的游戏理论规划师不切实际地假设所有代理都可以使用先验的目标功能知识。为了解决这个问题,我们提出了一个容忍度的退缩水平游戏理论运动计划者,该计划者利用了与意图假设的可能性相互交流。具体而言,机器人传达其目标函数以结合意图。离散的贝叶斯过滤器旨在根据观察到的轨迹与传达意图的轨迹之间的差异来实时推断目标。在仿真中,我们考虑了三种安全至关重要的自主驾驶场景,即超车,车道交叉和交叉点,以证明我们计划者在存在通信网络中存在错误的传输情况下利用替代意图假设来产生安全轨迹的能力。
translated by 谷歌翻译
自动驾驶汽车使用各种传感器和机器学习型号来预测周围道路使用者的行为。文献中的大多数机器学习模型都集中在定量误差指标上,例如均方根误差(RMSE),以学习和报告其模型的功能。对定量误差指标的关注倾向于忽略模型的更重要的行为方面,从而提出了这些模型是否真正预测类似人类行为的问题。因此,我们建议分析机器学习模型的输出,就像我们将在常规行为研究中分析人类数据一样。我们介绍定量指标,以证明在自然主义高速公路驾驶数据集中存在三种不同的行为现象:1)运动学依赖性谁通过合并点首次通过合并点2)巷道上的车道更改,可容纳坡道车辆3 )车辆通过高速公路上的车辆变化,以避免铅车冲突。然后,我们使用相同的指标分析了三个机器学习模型的行为。即使模型的RMSE值有所不同,所有模型都捕获了运动学依赖性的合并行为,但在不同程度上挣扎着捕获更细微的典型礼貌车道变更和高速公路车道的变化行为。此外,车道变化期间的碰撞厌恶分析表明,模型努力捕获人类驾驶的物理方面:在车辆之间留下足够的差距。因此,我们的分析强调了简单的定量指标不足,并且在分析人类驾驶预测的机器学习模型时需要更广泛的行为观点。
translated by 谷歌翻译
研究表明,自治车辆(AVS)在由人类驱动因素组成的交通环境中保守,不适应当地条件和社会文化规范。众所周知,如果存在理解人类驱动程序的行为,则可以设计社会意识的AVS。我们提出了一种利用机器学习来预测人类驱动程序的行为的方法。这类似于人类如何隐含地解释道路上司机的行为,只能观察其车辆的轨迹。我们使用图形理论工具从轨迹和机器学习中提取驾驶员行为特征,以在流量和驾驶员行为中获得车辆的提取轨迹之间的计算映射。与此域中的现有方法相比,我们证明我们的方法是强大的,一般的,并且可扩展到广泛的应用程序,如自主导航。我们评估我们在美国,印度,中国和新加坡捕获的现实世界交通数据集以及模拟中的方法。
translated by 谷歌翻译
为了计划安全的演习并采取远见卓识,自动驾驶汽车必须能够准确预测不确定的未来。在自主驾驶的背景下,深层神经网络已成功地应用于从数据中学习人类驾驶行为的预测模型。但是,这些预测遭受了级联错误的影响,导致长时间的不准确性。此外,学识渊博的模型是黑匣子,因此通常不清楚它们如何得出预测。相比之下,由人类专家告知的基于规则的模型在其预测中保持长期连贯性,并且是可解释的。但是,这样的模型通常缺乏捕获复杂的现实世界动态所需的足够表现力。在这项工作中,我们开始通过将智能驱动程序模型(一种流行的手工制作的驱动程序模型)嵌入深度神经网络来缩小这一差距。我们的模型的透明度可以提供可观的优势,例如在调试模型并更容易解释其预测时。我们在模拟合并方案中评估我们的方法,表明它产生了可端到端训练的强大模型,并无需为模型的预测准确性提供更大的透明度。
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
本文提出了一种新的规划和控制策略,用于赛车场景中的多辆车竞争。所提出的赛车策略在两种模式之间切换。当没有周围的车辆时,使用基于学习的模型预测控制(MPC)轨迹策划器用于保证自助车辆更好地实现了更好的搭接定时。当EGO车辆与其他围绕车辆竞争以超车时,基于优化的策划器通过并行计算产生多个动态可行的轨迹。每个轨迹在MPC配方下进行优化,其具有不同的同型贝塞尔曲线参考路径,横向于周围的车辆之间。选择这些不同的同型轨迹之间的时间最佳轨迹,并使用具有障碍物避免约束的低级MPC控制器来保证系统的安全性能。所提出的算法具有能够生成无碰撞轨迹并跟踪它们,同时提高杠杆定时性能,稳定的低计算复杂性,优于汽车赛车环境的时序和性能中的现有方法。为了展示我们的赛车策略的表现,我们在轨道上模拟了多个随机生成的移动车辆,并测试自我车辆的超越机动。
translated by 谷歌翻译
交叉点是自主行驶中最复杂和事故的城市场景之一,其中制造安全和计算有效的决策是非微不足道的。目前的研究主要关注简化的交通状况,同时忽略了混合交通流量的存在,即车辆,骑自行车者和行人。对于城市道路而言,不同的参与者导致了一个非常动态和复杂的互动,从而冒着学习智能政策的困难。本文在集成决策和控制框架中开发动态置换状态表示,以处理与混合业务流的信号化交集。特别地,该表示引入了编码功能和总和运算符,以构建来自环境观察的驱动状态,能够处理不同类型和变体的交通参与者。构建了受约束的最佳控制问题,其中目标涉及跟踪性能,并且不同参与者和信号灯的约束分别设计以确保安全性。我们通过离线优化编码函数,值函数和策略函数来解决这个问题,其中编码函数给出合理的状态表示,然后用作策略和值函数的输入。禁止策略培训旨在重用从驾驶环境中的观察,并且使用时间通过时间来利用策略函数和编码功能联合。验证结果表明,动态置换状态表示可以增强IDC的驱动性能,包括具有大边距的舒适性,决策合规性和安全性。训练有素的驾驶政策可以实现复杂交叉口的高效和平滑通过,同时保证驾驶智能和安全性。
translated by 谷歌翻译
自动驾驶在过去二十年中吸引了重要的研究兴趣,因为它提供了许多潜在的好处,包括释放驾驶和减轻交通拥堵的司机等。尽管进展有前途,但车道变化仍然是自治车辆(AV)的巨大挑战,特别是在混合和动态的交通方案中。最近,强化学习(RL)是一种强大的数据驱动控制方法,已被广泛探索了在令人鼓舞的效果中的通道中的车道改变决策。然而,这些研究的大多数研究专注于单车展,并且在多个AVS与人类驱动车辆(HDV)共存的情况下,道路变化已经受到稀缺的关注。在本文中,我们在混合交通公路环境中制定了多个AVS的车道改变决策,作为多功能增强学习(Marl)问题,其中每个AV基于相邻AV的动作使车道变化的决定和HDV。具体地,使用新颖的本地奖励设计和参数共享方案开发了一种多代理优势演员批评网络(MA2C)。特别是,提出了一种多目标奖励功能来纳入燃油效率,驾驶舒适度和自主驾驶的安全性。综合实验结果,在三种不同的交通密度和各级人类司机侵略性下进行,表明我们所提出的Marl框架在效率,安全和驾驶员舒适方面始终如一地优于几个最先进的基准。
translated by 谷歌翻译