安全可靠的自治解决方案是下一代智能运输系统的关键组成部分。这种系统中的自动驾驶汽车必须实时考虑复杂而动态的驾驶场景,并预测附近驾驶员的行为。人类驾驶行为非常细微,对个别交通参与者具有特殊性。例如,在合并车辆的情况下,驾驶员可能会显示合作或非合作行为。这些行为必须估算并纳入安全有效驾驶的计划过程中。在这项工作中,我们提出了一个框架,用于估计高速公路上驾驶员的合作水平,并计划将动作与驾驶员的潜在行为合并。潜在参数估计问题使用粒子滤波器解决,以近似合作级别的概率分布。包括潜在状态估算的部分可观察到的马尔可夫决策过程(POMDP)在线解决,以提取合并车辆的政策。我们在高保真汽车模拟器中评估我们的方法,以对潜在状态不可知或依赖于$ \ textit {a先验{先验} $假设。
translated by 谷歌翻译
一般而言,融合是人类驱动因素和自治车辆的具有挑战性的任务,特别是在密集的交通中,因为合并的车辆通常需要与其他车辆互动以识别或创造间隙并安全合并。在本文中,我们考虑了强制合并方案的自主车辆控制问题。我们提出了一种新的游戏 - 理论控制器,称为领导者跟随者游戏控制器(LFGC),其中自主EGO车辆和其他具有先验不确定驾驶意图的车辆之间的相互作用被建模为部分可观察到的领导者 - 跟随游戏。 LFGC估计基于观察到的轨迹的其他车辆在线在线,然后预测其未来的轨迹,并计划使用模型预测控制(MPC)来同时实现概率保证安全性和合并目标的自我车辆自己的轨迹。为了验证LFGC的性能,我们在模拟和NGSIM数据中测试它,其中LFGC在合并中展示了97.5%的高成功率。
translated by 谷歌翻译
这项工作研究了以下假设:与人类驾驶状态的部分可观察到的马尔可夫决策过程(POMDP)计划可以显着提高自动高速公路驾驶的安全性和效率。我们在模拟场景中评估了这一假设,即自动驾驶汽车必须在快速连续中安全执行三个车道变化。通过观测扩大(POMCPOW)算法,通过部分可观察到的蒙特卡洛计划获得了近似POMDP溶液。这种方法的表现优于过度自信和保守的MDP基准,匹配或匹配效果优于QMDP。相对于MDP基准,POMCPOW通常将不安全情况的速率降低了一半或将成功率提高50%。
translated by 谷歌翻译
自动驾驶在过去二十年中吸引了重要的研究兴趣,因为它提供了许多潜在的好处,包括释放驾驶和减轻交通拥堵的司机等。尽管进展有前途,但车道变化仍然是自治车辆(AV)的巨大挑战,特别是在混合和动态的交通方案中。最近,强化学习(RL)是一种强大的数据驱动控制方法,已被广泛探索了在令人鼓舞的效果中的通道中的车道改变决策。然而,这些研究的大多数研究专注于单车展,并且在多个AVS与人类驱动车辆(HDV)共存的情况下,道路变化已经受到稀缺的关注。在本文中,我们在混合交通公路环境中制定了多个AVS的车道改变决策,作为多功能增强学习(Marl)问题,其中每个AV基于相邻AV的动作使车道变化的决定和HDV。具体地,使用新颖的本地奖励设计和参数共享方案开发了一种多代理优势演员批评网络(MA2C)。特别是,提出了一种多目标奖励功能来纳入燃油效率,驾驶舒适度和自主驾驶的安全性。综合实验结果,在三种不同的交通密度和各级人类司机侵略性下进行,表明我们所提出的Marl框架在效率,安全和驾驶员舒适方面始终如一地优于几个最先进的基准。
translated by 谷歌翻译
人类行为的不确定性对拥挤的城市环境中的自动驾驶构成了重大挑战。部分可观察到的马尔可夫决策过程(POMDP)为不确定性下的计划提供了一个原则的框架,通常利用蒙特卡洛抽样来实现在线绩效进行复杂的任务。但是,抽样还通过潜在缺失关键事件引起了安全问题。为了解决这个问题,我们提出了一种新的算法,学习对驾驶行为(领导者)的关注,这些算法在计划过程中学习了批判性人类行为。领导者学习了一个神经网络生成器,以实时情况下对人类行为的关注。它将注意力集成到信仰空间计划者中,使用重要性抽样来偏向关键事件。为了训练该算法,我们让注意力生成器和计划者组成了最小游戏。通过解决Min-Max游戏,领导者学会了无需人类标签即可执行风险意识的计划。
translated by 谷歌翻译
我们解决了由具有不同驱动程序行为的道路代理人填充的密集模拟交通环境中的自我车辆导航问题。由于其异构行为引起的代理人的不可预测性,这种环境中的导航是挑战。我们提出了一种新的仿真技术,包括丰富现有的交通模拟器,其具有与不同程度的侵略性程度相对应的行为丰富的轨迹。我们在驾驶员行为建模算法的帮助下生成这些轨迹。然后,我们使用丰富的模拟器培训深度加强学习(DRL)策略,包括一组高级车辆控制命令,并在测试时间使用此策略来执行密集流量的本地导航。我们的政策隐含地模拟了交通代理商之间的交互,并计算了自助式驾驶员机动,例如超速,超速,编织和突然道路变化的激进驾驶员演习的安全轨迹。我们增强的行为丰富的模拟器可用于生成由对应于不同驱动程序行为和流量密度的轨迹组成的数据集,我们的行为的导航方案可以与最先进的导航算法相结合。
translated by 谷歌翻译
基于神经网络的驾驶规划师在改善自动驾驶的任务绩效方面表现出了巨大的承诺。但是,确保具有基于神经网络的组件的系统的安全性,尤其是在密集且高度交互式的交通环境中,这是至关重要的,但又具有挑战性。在这项工作中,我们为基于神经网络的车道更改提出了一个安全驱动的互动计划框架。为了防止过度保守计划,我们确定周围车辆的驾驶行为并评估其侵略性,然后以互动方式相应地适应了计划的轨迹。如果在预测的最坏情况下,即使存在安全的逃避轨迹,则自我车辆可以继续改变车道;否则,它可以停留在当前的横向位置附近或返回原始车道。我们通过广泛而全面的实验环境以及在自动驾驶汽车公司收集的现实情况下进行了广泛的模拟,定量证明了计划者设计的有效性及其优于基线方法的优势。
translated by 谷歌翻译
Prior work has looked at applying reinforcement learning and imitation learning approaches to autonomous driving scenarios, but either the safety or the efficiency of the algorithm is compromised. With the use of control barrier functions embedded into the reinforcement learning policy, we arrive at safe policies to optimize the performance of the autonomous driving vehicle. However, control barrier functions need a good approximation of the model of the car. We use probabilistic control barrier functions as an estimate of the model uncertainty. The algorithm is implemented as an online version in the CARLA (Dosovitskiy et al., 2017) Simulator and as an offline version on a dataset extracted from the NGSIM Database. The proposed algorithm is not just a safe ramp merging algorithm but a safe autonomous driving algorithm applied to address ramp merging on highways.
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
为了计划安全的演习并采取远见卓识,自动驾驶汽车必须能够准确预测不确定的未来。在自主驾驶的背景下,深层神经网络已成功地应用于从数据中学习人类驾驶行为的预测模型。但是,这些预测遭受了级联错误的影响,导致长时间的不准确性。此外,学识渊博的模型是黑匣子,因此通常不清楚它们如何得出预测。相比之下,由人类专家告知的基于规则的模型在其预测中保持长期连贯性,并且是可解释的。但是,这样的模型通常缺乏捕获复杂的现实世界动态所需的足够表现力。在这项工作中,我们开始通过将智能驱动程序模型(一种流行的手工制作的驱动程序模型)嵌入深度神经网络来缩小这一差距。我们的模型的透明度可以提供可观的优势,例如在调试模型并更容易解释其预测时。我们在模拟合并方案中评估我们的方法,表明它产生了可端到端训练的强大模型,并无需为模型的预测准确性提供更大的透明度。
translated by 谷歌翻译
Traditional planning and control methods could fail to find a feasible trajectory for an autonomous vehicle to execute amongst dense traffic on roads. This is because the obstacle-free volume in spacetime is very small in these scenarios for the vehicle to drive through. However, that does not mean the task is infeasible since human drivers are known to be able to drive amongst dense traffic by leveraging the cooperativeness of other drivers to open a gap. The traditional methods fail to take into account the fact that the actions taken by an agent affect the behaviour of other vehicles on the road. In this work, we rely on the ability of deep reinforcement learning to implicitly model such interactions and learn a continuous control policy over the action space of an autonomous vehicle. The application we consider requires our agent to negotiate and open a gap in the road in order to successfully merge or change lanes. Our policy learns to repeatedly probe into the target road lane while trying to find a safe spot to move in to. We compare against two model-predictive control-based algorithms and show that our policy outperforms them in simulation.
translated by 谷歌翻译
游戏理论运动计划者是控制多个高度交互式机器人系统的有效解决方案。大多数现有的游戏理论规划师不切实际地假设所有代理都可以使用先验的目标功能知识。为了解决这个问题,我们提出了一个容忍度的退缩水平游戏理论运动计划者,该计划者利用了与意图假设的可能性相互交流。具体而言,机器人传达其目标函数以结合意图。离散的贝叶斯过滤器旨在根据观察到的轨迹与传达意图的轨迹之间的差异来实时推断目标。在仿真中,我们考虑了三种安全至关重要的自主驾驶场景,即超车,车道交叉和交叉点,以证明我们计划者在存在通信网络中存在错误的传输情况下利用替代意图假设来产生安全轨迹的能力。
translated by 谷歌翻译
Robots such as autonomous vehicles and assistive manipulators are increasingly operating in dynamic environments and close physical proximity to people. In such scenarios, the robot can leverage a human motion predictor to predict their future states and plan safe and efficient trajectories. However, no model is ever perfect -- when the observed human behavior deviates from the model predictions, the robot might plan unsafe maneuvers. Recent works have explored maintaining a confidence parameter in the human model to overcome this challenge, wherein the predicted human actions are tempered online based on the likelihood of the observed human action under the prediction model. This has opened up a new research challenge, i.e., \textit{how to compute the future human states online as the confidence parameter changes?} In this work, we propose a Hamilton-Jacobi (HJ) reachability-based approach to overcome this challenge. Treating the confidence parameter as a virtual state in the system, we compute a parameter-conditioned forward reachable tube (FRT) that provides the future human states as a function of the confidence parameter. Online, as the confidence parameter changes, we can simply query the corresponding FRT, and use it to update the robot plan. Computing parameter-conditioned FRT corresponds to an (offline) high-dimensional reachability problem, which we solve by leveraging recent advances in data-driven reachability analysis. Overall, our framework enables online maintenance and updates of safety assurances in human-robot interaction scenarios, even when the human prediction model is incorrect. We demonstrate our approach in several safety-critical autonomous driving scenarios, involving a state-of-the-art deep learning-based prediction model.
translated by 谷歌翻译
密集的安全导航,城市驾驶环境仍然是一个开放的问题和一个活跃的研究领域。与典型的预测 - 计划方法不同,游戏理论规划考虑了一辆车的计划如何影响另一个车辆的行为。最近的工作表明,在具有非线性目标和约束的普通和游戏中找到当地纳什均衡所需的时间重大改进。当狡辩到驾驶时,这些作品假设场景中的所有车辆一起玩游戏,这可能导致密集流量的难治性计算时间。我们通过假设代理商在他们的观察附近玩游戏的代理商来制定分散的游戏理论规划方法,我们认为我们认为是人类驾驶的更合理的假设。游戏是并行播放的,以进行交互图的所有强烈连接的组件,显着减少了每个游戏中的玩家和约束的数量,从而减少了规划所需的时间。我们证明我们的方法可以通过比较智能驱动程序模型和集中式游戏理论规划在互动数据集中的环形交叉路口时,通过比较智能驱动程序模型和集中式游戏理论规划的性能来实现无碰撞,高效的驾驶。我们的实现可在http://github.com/sisl/decnashplanning获取。
translated by 谷歌翻译
城市交叉点的交通效率提高在自动交叉管理领域具有强大的研究兴趣。到目前为止,提出了大多数非学习算法(例如预订或基于优化的算法)来解决基本的多代理计划问题。同时,使用机器学习方法越来越多地实施了单个自我车辆的自动驾驶功能。在这项工作中,我们基于先前呈现的基于图的场景表示和图形神经网络,以使用强化学习来解决问题。除了车辆的现有节点功能外,通过使用边缘功能,通过使用边缘功能改进了场景表示。这会导致更高的表示网络体系结构利用的表示质量提高。本文对针对自动交叉路口管理通常使用的基线的建议方法进行了深入的评估。与传统的信号交叉路口和增强的第一届第一方案相比,在变化的交通密度下,观察到诱导延迟的显着减少。最后,通过测试训练过程中未见的交叉路口布局的策略来评估基于图的表示的概括能力。该模型实际上将较小的相交布局概括,并且在某些范围内对较大的交叉路口进行了概括。
translated by 谷歌翻译
由于交通的固有复杂性和不确定性,自主驾驶决策是一项具有挑战性的任务。例如,相邻的车辆可能随时改变其车道或超越,以通过慢速车辆或帮助交通流量。预期周围车辆的意图,估算其未来状态并将其整合到自动化车辆的决策过程中,可以提高复杂驾驶场景中自动驾驶的可靠性。本文提出了一种基于预测的深入强化学习(PDRL)决策模型,该模型在公路驾驶决策过程中考虑了周围车辆的操纵意图。该模型是使用真实流量数据训练的,并通过模拟平台在各种交通条件下进行了测试。结果表明,与深入的增强学习(DRL)模型相比,提出的PDRL模型通过减少碰撞数量来改善决策绩效,从而导致更安全的驾驶。
translated by 谷歌翻译
由于静态优先规则和遮挡限制了对优先流量的观点,城市交叉口容易延迟和效率低下。改善交通流量的现有方法(广泛称为自动交叉管理系统)主要基于非学习预订方案或优化算法。基于机器学习的技术在计划单个自我车辆方面显示出令人鼓舞的结果。这项工作建议通过共同计划多辆车来利用机器学习算法来优化城市交叉点的交通流量。基于学习的行为计划提出了几个挑战,要求适合的输入和输出表示以及大量的基础数据。我们通过使用基于图形的柔性输入表示并伴随图神经网络来解决以前的问题。这允许有效地编码场景,并固有地为所有相关车辆提供单独的输出。为了学习明智的政策,而不依赖于专家示范的模仿,合作计划任务被视为强化学习问题。我们在开源模拟环境中训练并评估提出的方法,以进行自动驾驶的决策。与静态优先规则管理的第一届第一局和流量相比,学识渊博的计划者表现出显着的流速增长,同时减少了诱导停止的数量。除合成模拟外,还基于从公开可用的IND数据集中获取的现实世界流量数据进行评估。
translated by 谷歌翻译
预计自动驾驶技术不仅可以提高移动性和道路安全性,还可以提高能源效率的益处。在可预见的未来,自动车辆(AVS)将在与人机车辆共享的道路上运行。为了保持安全性和活力,同时尽量减少能耗,AV规划和决策过程应考虑自动自动驾驶车辆与周围的人机车辆之间的相互作用。在本章中,我们描述了一种通过基于认知层次理论和强化学习开发人的驾驶员行为建模来开发共用道路上的节能自主驾驶政策的框架。
translated by 谷歌翻译
行人在场的运动控制算法对于开发安全可靠的自动驾驶汽车(AV)至关重要。传统运动控制算法依赖于手动设计的决策政策,这些政策忽略了AV和行人之间的相互作用。另一方面,深度强化学习的最新进展允许在没有手动设计的情况下自动学习政策。为了解决行人在场的决策问题,作者介绍了一个基于社会价值取向和深入强化学习(DRL)的框架,该框架能够以不同的驾驶方式生成决策政策。该政策是在模拟环境中使用最先进的DRL算法培训的。还引入了适合DRL训练的新型计算效率的行人模型。我们执行实验以验证我们的框架,并对使用两种不同的无模型深钢筋学习算法获得的策略进行了比较分析。模拟结果表明,开发的模型如何表现出自然的驾驶行为,例如短暂的驾驶行为,以促进行人的穿越。
translated by 谷歌翻译
在与其他代理商的社交互动下进行计划是自动驾驶的重要问题。随着自动驾驶汽车在相互作用中的作用会影响,并且也受到其他试剂的影响,因此自动驾驶汽车需要有效地推断其他试剂的反应。大多数现有方法将问题提出为广泛的NASH平衡问题,该问题通过基于优化的方法解决。但是,他们要求过多的计算资源,并且由于非凸度而容易落入本地最低限度。蒙特卡洛树搜索(MCTS)成功解决了游戏理论问题中的此类问题。但是,随着交互游戏树的成倍增长,一般的MCT仍然需要大量迭代才能达到Optima。在本文中,我们通过将预测算法作为启发式算法纳入了基于一般MCT的高效游戏理论轨迹计划算法。最重要的是,符合社会的奖励和贝叶斯推理算法旨在产生多样化的驾驶行为并确定其他驾驶员的驾驶偏好。结果证明了在高度交互式场景中包含自然主义驾驶行为的数据集的提议框架的有效性。
translated by 谷歌翻译