由于静态优先规则和遮挡限制了对优先流量的观点,城市交叉口容易延迟和效率低下。改善交通流量的现有方法(广泛称为自动交叉管理系统)主要基于非学习预订方案或优化算法。基于机器学习的技术在计划单个自我车辆方面显示出令人鼓舞的结果。这项工作建议通过共同计划多辆车来利用机器学习算法来优化城市交叉点的交通流量。基于学习的行为计划提出了几个挑战,要求适合的输入和输出表示以及大量的基础数据。我们通过使用基于图形的柔性输入表示并伴随图神经网络来解决以前的问题。这允许有效地编码场景,并固有地为所有相关车辆提供单独的输出。为了学习明智的政策,而不依赖于专家示范的模仿,合作计划任务被视为强化学习问题。我们在开源模拟环境中训练并评估提出的方法,以进行自动驾驶的决策。与静态优先规则管理的第一届第一局和流量相比,学识渊博的计划者表现出显着的流速增长,同时减少了诱导停止的数量。除合成模拟外,还基于从公开可用的IND数据集中获取的现实世界流量数据进行评估。
translated by 谷歌翻译
城市交叉点的交通效率提高在自动交叉管理领域具有强大的研究兴趣。到目前为止,提出了大多数非学习算法(例如预订或基于优化的算法)来解决基本的多代理计划问题。同时,使用机器学习方法越来越多地实施了单个自我车辆的自动驾驶功能。在这项工作中,我们基于先前呈现的基于图的场景表示和图形神经网络,以使用强化学习来解决问题。除了车辆的现有节点功能外,通过使用边缘功能,通过使用边缘功能改进了场景表示。这会导致更高的表示网络体系结构利用的表示质量提高。本文对针对自动交叉路口管理通常使用的基线的建议方法进行了深入的评估。与传统的信号交叉路口和增强的第一届第一方案相比,在变化的交通密度下,观察到诱导延迟的显着减少。最后,通过测试训练过程中未见的交叉路口布局的策略来评估基于图的表示的概括能力。该模型实际上将较小的相交布局概括,并且在某些范围内对较大的交叉路口进行了概括。
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
Traditional planning and control methods could fail to find a feasible trajectory for an autonomous vehicle to execute amongst dense traffic on roads. This is because the obstacle-free volume in spacetime is very small in these scenarios for the vehicle to drive through. However, that does not mean the task is infeasible since human drivers are known to be able to drive amongst dense traffic by leveraging the cooperativeness of other drivers to open a gap. The traditional methods fail to take into account the fact that the actions taken by an agent affect the behaviour of other vehicles on the road. In this work, we rely on the ability of deep reinforcement learning to implicitly model such interactions and learn a continuous control policy over the action space of an autonomous vehicle. The application we consider requires our agent to negotiate and open a gap in the road in order to successfully merge or change lanes. Our policy learns to repeatedly probe into the target road lane while trying to find a safe spot to move in to. We compare against two model-predictive control-based algorithms and show that our policy outperforms them in simulation.
translated by 谷歌翻译
自动驾驶在过去二十年中吸引了重要的研究兴趣,因为它提供了许多潜在的好处,包括释放驾驶和减轻交通拥堵的司机等。尽管进展有前途,但车道变化仍然是自治车辆(AV)的巨大挑战,特别是在混合和动态的交通方案中。最近,强化学习(RL)是一种强大的数据驱动控制方法,已被广泛探索了在令人鼓舞的效果中的通道中的车道改变决策。然而,这些研究的大多数研究专注于单车展,并且在多个AVS与人类驱动车辆(HDV)共存的情况下,道路变化已经受到稀缺的关注。在本文中,我们在混合交通公路环境中制定了多个AVS的车道改变决策,作为多功能增强学习(Marl)问题,其中每个AV基于相邻AV的动作使车道变化的决定和HDV。具体地,使用新颖的本地奖励设计和参数共享方案开发了一种多代理优势演员批评网络(MA2C)。特别是,提出了一种多目标奖励功能来纳入燃油效率,驾驶舒适度和自主驾驶的安全性。综合实验结果,在三种不同的交通密度和各级人类司机侵略性下进行,表明我们所提出的Marl框架在效率,安全和驾驶员舒适方面始终如一地优于几个最先进的基准。
translated by 谷歌翻译
交叉点是自主行驶中最复杂和事故的城市场景之一,其中制造安全和计算有效的决策是非微不足道的。目前的研究主要关注简化的交通状况,同时忽略了混合交通流量的存在,即车辆,骑自行车者和行人。对于城市道路而言,不同的参与者导致了一个非常动态和复杂的互动,从而冒着学习智能政策的困难。本文在集成决策和控制框架中开发动态置换状态表示,以处理与混合业务流的信号化交集。特别地,该表示引入了编码功能和总和运算符,以构建来自环境观察的驱动状态,能够处理不同类型和变体的交通参与者。构建了受约束的最佳控制问题,其中目标涉及跟踪性能,并且不同参与者和信号灯的约束分别设计以确保安全性。我们通过离线优化编码函数,值函数和策略函数来解决这个问题,其中编码函数给出合理的状态表示,然后用作策略和值函数的输入。禁止策略培训旨在重用从驾驶环境中的观察,并且使用时间通过时间来利用策略函数和编码功能联合。验证结果表明,动态置换状态表示可以增强IDC的驱动性能,包括具有大边距的舒适性,决策合规性和安全性。训练有素的驾驶政策可以实现复杂交叉口的高效和平滑通过,同时保证驾驶智能和安全性。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
我们解决了由具有不同驱动程序行为的道路代理人填充的密集模拟交通环境中的自我车辆导航问题。由于其异构行为引起的代理人的不可预测性,这种环境中的导航是挑战。我们提出了一种新的仿真技术,包括丰富现有的交通模拟器,其具有与不同程度的侵略性程度相对应的行为丰富的轨迹。我们在驾驶员行为建模算法的帮助下生成这些轨迹。然后,我们使用丰富的模拟器培训深度加强学习(DRL)策略,包括一组高级车辆控制命令,并在测试时间使用此策略来执行密集流量的本地导航。我们的政策隐含地模拟了交通代理商之间的交互,并计算了自助式驾驶员机动,例如超速,超速,编织和突然道路变化的激进驾驶员演习的安全轨迹。我们增强的行为丰富的模拟器可用于生成由对应于不同驱动程序行为和流量密度的轨迹组成的数据集,我们的行为的导航方案可以与最先进的导航算法相结合。
translated by 谷歌翻译
作为一项新兴技术,据信,连接的自动驾驶汽车能够以更高的效率通过交叉点,并且与基于预先设计的基于模型或基于优化的计划通过计划相比,已经进行了数十年的相关研究,这是相比的。在过去两年中,自主交叉管理(AIM)领域(AIM)领域的分布强化学习才开始出现,并面临许多挑战。我们的研究设计了一个多级学习框架,具有各种观察范围,动作步骤和奖励期,以充分利用车辆周围的信息,并帮助找出所有车辆的最佳交互策略。我们的实验已证明,与没有它的RL相比,与RL相比,该框架可以显着提高安全性,并提高效率与基线相比。
translated by 谷歌翻译
无线技术的最新进步使连接的自动驾驶汽车(CAV)能够通过车辆到车辆(V2V)通信收集有关其环境的信息。在这项工作中,我们为CAVS设计了基于信息共享的多代理增援学习(MARL)框架,以在做出决定以提高交通效率和安全性时利用额外的信息。我们提出的安全参与者批评算法有两种新技术:截断的Q功能和安全动作映射。截断的Q功能利用了来自相邻骑士的共享信息,以使Q-功能的联合状态和动作空间在我们的算法中不会在大型CAV系统中生长。我们证明了截短Q和全局Q函数之间近似误差的结合。安全的操作映射为基于控制屏障功能的培训和执行提供了可证明的安全保证。我们使用CARLA模拟器进行实验,我们表明我们的方法可以在不同的CAV比和不同的交通密度下的平均速度和舒适性方面提高CAV系统的效率。我们还表明,我们的方法避免执行不安全的动作,并始终保持与其他车辆的安全距离。我们构建了一个障碍物的场景,以表明共同的愿景可以帮助骑士早些时候观察障碍,并采取行动避免交通拥堵。
translated by 谷歌翻译
本文提出了一个基于加固学习(RL)的电动连接车辆(CV)的生态驾驶框架,以提高信号交叉点的车辆能效。通过整合基于型号的汽车策略,改变车道的政策和RL政策来确保车辆代理的安全操作。随后,制定了马尔可夫决策过程(MDP),该过程使车辆能够执行纵向控制和横向决策,从而共同优化了交叉口附近CVS的CAR跟踪和改变车道的行为。然后,将混合动作空间参数化为层次结构,从而在动态交通环境中使用二维运动模式训练代理。最后,我们所提出的方法从基于单车的透视和基于流的透视图中在Sumo软件中进行了评估。结果表明,我们的策略可以通过学习适当的动作方案来大大减少能源消耗,而不会中断其他人类驱动的车辆(HDVS)。
translated by 谷歌翻译
研究表明,自治车辆(AVS)在由人类驱动因素组成的交通环境中保守,不适应当地条件和社会文化规范。众所周知,如果存在理解人类驱动程序的行为,则可以设计社会意识的AVS。我们提出了一种利用机器学习来预测人类驱动程序的行为的方法。这类似于人类如何隐含地解释道路上司机的行为,只能观察其车辆的轨迹。我们使用图形理论工具从轨迹和机器学习中提取驾驶员行为特征,以在流量和驾驶员行为中获得车辆的提取轨迹之间的计算映射。与此域中的现有方法相比,我们证明我们的方法是强大的,一般的,并且可扩展到广泛的应用程序,如自主导航。我们评估我们在美国,印度,中国和新加坡捕获的现实世界交通数据集以及模拟中的方法。
translated by 谷歌翻译
随着自动组件比例越来越多的新兴车辆系统提供了最佳控制的机会,以减轻交通拥堵和提高效率。最近有兴趣将深入增强学习(DRL)应用于这些非线性动力学系统,以自动设计有效的控制策略。尽管DRL是无模型的概念优势,但研究通常仍依赖于对特定车辆系统的艰苦训练设置。这是对各种车辆和机动性系统有效分析的关键挑战。为此,本文贡献了一种简化的用于车辆微仿真的方法,并以最少的手动设计发现了高性能控制策略。提出了一种可变的代理,多任务方法,以优化车辆部分观察到的马尔可夫决策过程。该方法在混合自治交通系统上进行了实验验证,该系统是自动化的。在六种不同的开放或封闭交通系统的所有配置中都可以观察到经验改进,通常比人类驾驶基线的15-60%。该研究揭示了许多紧急行为类似于缓解波浪,交通信号传导和坡道计量。最后,对新兴行为进行了分析,以产生可解释的控制策略,这些控制策略已通过学习的控制策略进行了验证。
translated by 谷歌翻译
我们介绍了\ textit {nocturne},这是一种新的2D驾驶模拟器,用于调查部分可观察性下的多代理协调。夜曲的重点是在不具有计算机视觉的计算开销并从图像中提取特征的情况下,在现实世界中的推理和心理理论方面进行研究。该模拟器中的代理只会观察到场景的障碍,模仿人类的视觉传感限制。 Unlike existing benchmarks that are bottlenecked by rendering human-like observations directly using a camera input, Nocturne uses efficient intersection methods to compute a vectorized set of visible features in a C++ back-end, allowing the simulator to run at $2000+$ steps-per -第二。使用开源轨迹和映射数据,我们构建了一个模拟器,以加载和重播来自现实世界驾驶数据的任意轨迹和场景。使用这种环境,我们基准了加强学习和模仿学习剂,并证明这些代理远离人类水平的协调能力,并显着偏离专家轨迹。
translated by 谷歌翻译
We present an approach for safe trajectory planning, where a strategic task related to autonomous racing is learned sample-efficient within a simulation environment. A high-level policy, represented as a neural network, outputs a reward specification that is used within the cost function of a parametric nonlinear model predictive controller (NMPC). By including constraints and vehicle kinematics in the NLP, we are able to guarantee safe and feasible trajectories related to the used model. Compared to classical reinforcement learning (RL), our approach restricts the exploration to safe trajectories, starts with a good prior performance and yields full trajectories that can be passed to a tracking lowest-level controller. We do not address the lowest-level controller in this work and assume perfect tracking of feasible trajectories. We show the superior performance of our algorithm on simulated racing tasks that include high-level decision making. The vehicle learns to efficiently overtake slower vehicles and to avoid getting overtaken by blocking faster vehicles.
translated by 谷歌翻译
安全可靠的自治解决方案是下一代智能运输系统的关键组成部分。这种系统中的自动驾驶汽车必须实时考虑复杂而动态的驾驶场景,并预测附近驾驶员的行为。人类驾驶行为非常细微,对个别交通参与者具有特殊性。例如,在合并车辆的情况下,驾驶员可能会显示合作或非合作行为。这些行为必须估算并纳入安全有效驾驶的计划过程中。在这项工作中,我们提出了一个框架,用于估计高速公路上驾驶员的合作水平,并计划将动作与驾驶员的潜在行为合并。潜在参数估计问题使用粒子滤波器解决,以近似合作级别的概率分布。包括潜在状态估算的部分可观察到的马尔可夫决策过程(POMDP)在线解决,以提取合并车辆的政策。我们在高保真汽车模拟器中评估我们的方法,以对潜在状态不可知或依赖于$ \ textit {a先验{先验} $假设。
translated by 谷歌翻译
交通拥堵是现代城市环境中的主要挑战。自动驾驶汽车和自动化车辆(AV)的行业范围内开发激发了AVS如何促进拥塞减少的问题。过去的研究表明,在小规模的混合交通情况下,AVS和人类驱动的车辆,执行受控多种驾驶政策的AVS的一小部分可以减轻拥堵。在本文中,我们扩展了现有方法,并在更复杂的情况下为AVS制定新的多种驾驶政策。首先,我们表明过去研究使用的拥堵指标是​​可以在开放的道路网络场景中操纵的,在该场景中,车辆动态加入并离开道路。然后,我们建议使用一个不同的指标来操纵并反映开放的网络流量效率。接下来,我们提出一种模块化转移增强学习方法,并使用它来扩展多种驾驶政策,以超越类似人类的流量和模拟现实情况下的现有方法,这是一个比过去的场景大的数量级(数百次而不是过去的情况(而不是)数十个车辆)。此外,我们的模块化转移学习方法通​​过将其数据收集集中在网络中的关键位置上,从而节省了我们实验中80%的培训时间。最后,我们首次展示了一项分布式的多重政策,从而改善了人类驱动流量的拥堵。分布式方法更现实和实用,因为它仅依赖于现有的感应和驱动功能,并且不需要添加新的通信基础架构。
translated by 谷歌翻译
强化学习(RL)已证明可以在各种任务中达到超级人类水平的表现。但是,与受监督的机器学习不同,将其推广到各种情况的学习策略仍然是现实世界中最具挑战性的问题之一。自主驾驶(AD)提供了一个多方面的实验领域,因为有必要在许多变化的道路布局和可能的交通情况大量分布中学习正确的行为,包括个人驾驶员个性和难以预测的交通事件。在本文中,我们根据可配置,灵活和性能的代码库为AD提出了一个具有挑战性的基准。我们的基准测试使用了随机场景生成器的目录,包括用于道路布局和交通变化的多种机制,不同的数值和视觉观察类型,不同的动作空间,不同的车辆模型,并允许在静态场景定义下使用。除了纯粹的算法见解外,我们面向应用程序的基准还可以更好地理解设计决策的影响,例如行动和观察空间对政策的普遍性。我们的基准旨在鼓励研究人员提出能够在各种情况下成功概括的解决方案,这是当前RL方法失败的任务。基准的代码可在https://github.com/seawee1/driver-dojo上获得。
translated by 谷歌翻译
在多机构动态交通情况下的自主驾驶具有挑战性:道路使用者的行为不确定,很难明确建模,并且自我车辆应与他们应用复杂的谈判技巧,例如屈服,合并和交付,以实现,以实现在各种环境中都有安全有效的驾驶。在这些复杂的动态场景中,传统的计划方法主要基于规则,并且通常会导致反应性甚至过于保守的行为。因此,他们需要乏味的人类努力来维持可行性。最近,基于深度学习的方法显示出令人鼓舞的结果,具有更好的概括能力,但手工工程的工作较少。但是,它们要么是通过有监督的模仿学习(IL)来实施的,该学习遭受了数据集偏见和分配不匹配问题,要么接受了深入强化学习(DRL)的培训,但专注于一种特定的交通情况。在这项工作中,我们建议DQ-GAT实现可扩展和主动的自主驾驶,在这些驾驶中,基于图形注意力的网络用于隐式建模相互作用,并采用了深层Q学习来以无聊的方式训练网络端到端的网络。 。在高保真驾驶模拟器中进行的广泛实验表明,我们的方法比以前的基于学习的方法和传统的基于规则的方法获得了更高的成功率,并且在可见和看不见的情况下都可以更好地摆脱安全性和效率。此外,轨迹数据集的定性结果表明,我们所学的政策可以通过实时速度转移到现实世界中。演示视频可在https://caipeide.github.io/dq-gat/上找到。
translated by 谷歌翻译
在典型的自主驾驶堆栈中,计划和控制系统代表了两个最关键的组件,其中传感器检索并通过感知算法处理的数据用于实施安全舒适的自动驾驶行为。特别是,计划模块可以预测自动驾驶汽车应遵循正确的高级操作的路径,而控制系统则执行一系列低级动作,控制转向角度,油门和制动器。在这项工作中,我们提出了一个无模型的深钢筋学习计划者培训一个可以预测加速度和转向角度的神经网络,从而获得了一个单个模块,可以使用自我自我的本地化和感知算法处理的数据来驱动车辆-驾车。特别是,在模拟中进行了全面训练的系统能够在模拟和帕尔马市现实世界中的无障碍环境中平稳驱动,证明该系统具有良好的概括能力,也可以驱动驱动在培训方案之外的那些部分。此外,为了将系统部署在真正的自动驾驶汽车上,并减少模拟和现实世界中的差距,我们还开发了一个由微小的神经网络表示的模块,能够在期间重现真正的车辆动态行为模拟的培训。
translated by 谷歌翻译