行人在场的运动控制算法对于开发安全可靠的自动驾驶汽车(AV)至关重要。传统运动控制算法依赖于手动设计的决策政策,这些政策忽略了AV和行人之间的相互作用。另一方面,深度强化学习的最新进展允许在没有手动设计的情况下自动学习政策。为了解决行人在场的决策问题,作者介绍了一个基于社会价值取向和深入强化学习(DRL)的框架,该框架能够以不同的驾驶方式生成决策政策。该政策是在模拟环境中使用最先进的DRL算法培训的。还引入了适合DRL训练的新型计算效率的行人模型。我们执行实验以验证我们的框架,并对使用两种不同的无模型深钢筋学习算法获得的策略进行了比较分析。模拟结果表明,开发的模型如何表现出自然的驾驶行为,例如短暂的驾驶行为,以促进行人的穿越。
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
然而,由于各种交通/道路结构方案以及人类驾驶员行为的长时间分布,自动驾驶的感应,感知和本地化取得了重大进展,因此,对于智能车辆来说,这仍然是一个持开放态度的挑战始终知道如何在有可用的传感 /感知 /本地化信息的道路上做出和执行最佳决定。在本章中,我们讨论了人工智能,更具体地说,强化学习如何利用运营知识和安全反射来做出战略性和战术决策。我们讨论了一些与强化学习解决方案的鲁棒性及其对自动驾驶驾驶策略的实践设计有关的具有挑战性的问题。我们专注于在高速公路上自动驾驶以及增强学习,车辆运动控制和控制屏障功能的整合,从而实现了可靠的AI驾驶策略,可以安全地学习和适应。
translated by 谷歌翻译
自动驾驶在过去二十年中吸引了重要的研究兴趣,因为它提供了许多潜在的好处,包括释放驾驶和减轻交通拥堵的司机等。尽管进展有前途,但车道变化仍然是自治车辆(AV)的巨大挑战,特别是在混合和动态的交通方案中。最近,强化学习(RL)是一种强大的数据驱动控制方法,已被广泛探索了在令人鼓舞的效果中的通道中的车道改变决策。然而,这些研究的大多数研究专注于单车展,并且在多个AVS与人类驱动车辆(HDV)共存的情况下,道路变化已经受到稀缺的关注。在本文中,我们在混合交通公路环境中制定了多个AVS的车道改变决策,作为多功能增强学习(Marl)问题,其中每个AV基于相邻AV的动作使车道变化的决定和HDV。具体地,使用新颖的本地奖励设计和参数共享方案开发了一种多代理优势演员批评网络(MA2C)。特别是,提出了一种多目标奖励功能来纳入燃油效率,驾驶舒适度和自主驾驶的安全性。综合实验结果,在三种不同的交通密度和各级人类司机侵略性下进行,表明我们所提出的Marl框架在效率,安全和驾驶员舒适方面始终如一地优于几个最先进的基准。
translated by 谷歌翻译
在自主驾驶场中,人类知识融合到深增强学习(DRL)通常基于在模拟环境中记录的人类示范。这限制了在现实世界交通中的概率和可行性。我们提出了一种两级DRL方法,从真实的人类驾驶中学习,实现优于纯DRL代理的性能。培训DRL代理商是在Carla的框架内完成了机器人操作系统(ROS)。对于评估,我们设计了不同的真实驾驶场景,可以将提出的两级DRL代理与纯DRL代理进行比较。在从人驾驶员中提取“良好”行为之后,例如在信号交叉口中的预期,该代理变得更有效,并且驱动更安全,这使得这种自主代理更适应人体机器人交互(HRI)流量。
translated by 谷歌翻译
我们解决了由具有不同驱动程序行为的道路代理人填充的密集模拟交通环境中的自我车辆导航问题。由于其异构行为引起的代理人的不可预测性,这种环境中的导航是挑战。我们提出了一种新的仿真技术,包括丰富现有的交通模拟器,其具有与不同程度的侵略性程度相对应的行为丰富的轨迹。我们在驾驶员行为建模算法的帮助下生成这些轨迹。然后,我们使用丰富的模拟器培训深度加强学习(DRL)策略,包括一组高级车辆控制命令,并在测试时间使用此策略来执行密集流量的本地导航。我们的政策隐含地模拟了交通代理商之间的交互,并计算了自助式驾驶员机动,例如超速,超速,编织和突然道路变化的激进驾驶员演习的安全轨迹。我们增强的行为丰富的模拟器可用于生成由对应于不同驱动程序行为和流量密度的轨迹组成的数据集,我们的行为的导航方案可以与最先进的导航算法相结合。
translated by 谷歌翻译
本文提出了一个基于加固学习(RL)的电动连接车辆(CV)的生态驾驶框架,以提高信号交叉点的车辆能效。通过整合基于型号的汽车策略,改变车道的政策和RL政策来确保车辆代理的安全操作。随后,制定了马尔可夫决策过程(MDP),该过程使车辆能够执行纵向控制和横向决策,从而共同优化了交叉口附近CVS的CAR跟踪和改变车道的行为。然后,将混合动作空间参数化为层次结构,从而在动态交通环境中使用二维运动模式训练代理。最后,我们所提出的方法从基于单车的透视和基于流的透视图中在Sumo软件中进行了评估。结果表明,我们的策略可以通过学习适当的动作方案来大大减少能源消耗,而不会中断其他人类驱动的车辆(HDVS)。
translated by 谷歌翻译
Traditional planning and control methods could fail to find a feasible trajectory for an autonomous vehicle to execute amongst dense traffic on roads. This is because the obstacle-free volume in spacetime is very small in these scenarios for the vehicle to drive through. However, that does not mean the task is infeasible since human drivers are known to be able to drive amongst dense traffic by leveraging the cooperativeness of other drivers to open a gap. The traditional methods fail to take into account the fact that the actions taken by an agent affect the behaviour of other vehicles on the road. In this work, we rely on the ability of deep reinforcement learning to implicitly model such interactions and learn a continuous control policy over the action space of an autonomous vehicle. The application we consider requires our agent to negotiate and open a gap in the road in order to successfully merge or change lanes. Our policy learns to repeatedly probe into the target road lane while trying to find a safe spot to move in to. We compare against two model-predictive control-based algorithms and show that our policy outperforms them in simulation.
translated by 谷歌翻译
Decision-making strategy for autonomous vehicles de-scribes a sequence of driving maneuvers to achieve a certain navigational mission. This paper utilizes the deep reinforcement learning (DRL) method to address the continuous-horizon decision-making problem on the highway. First, the vehicle kinematics and driving scenario on the freeway are introduced. The running objective of the ego automated vehicle is to execute an efficient and smooth policy without collision. Then, the particular algorithm named proximal policy optimization (PPO)-enhanced DRL is illustrated. To overcome the challenges in tardy training efficiency and sample inefficiency, this applied algorithm could realize high learning efficiency and excellent control performance. Finally, the PPO-DRL-based decision-making strategy is estimated from multiple perspectives, including the optimality, learning efficiency, and adaptability. Its potential for online application is discussed by applying it to similar driving scenarios.
translated by 谷歌翻译
由于互动交通参与者的随机性质和道路结构的复杂性,城市自动驾驶的决策是具有挑战性的。尽管基于强化的学习(RL)决策计划有望处理城市驾驶方案,但它的样本效率低和适应性差。在本文中,我们提出了Scene-Rep Transformer,以通过更好的场景表示编码和顺序预测潜在蒸馏来提高RL决策能力。具体而言,构建了多阶段变压器(MST)编码器,不仅对自我车辆及其邻居之间的相互作用意识进行建模,而且对代理商及其候选路线之间的意图意识。具有自我监督学习目标的连续潜伏变压器(SLT)用于将未来的预测信息提炼成潜在的场景表示,以减少勘探空间并加快训练的速度。基于软演员批评的最终决策模块(SAC)将来自场景rep变压器的精制潜在场景表示输入,并输出驾驶动作。该框架在五个挑战性的模拟城市场景中得到了验证,其性能通过成功率,安全性和效率方面的数据效率和性能的大幅度提高来定量表现出来。定性结果表明,我们的框架能够提取邻居代理人的意图,以帮助做出决策并提供更多多元化的驾驶行为。
translated by 谷歌翻译
最近,自主驾驶社会上有许多进展,吸引了学术界和工业的很多关注。然而,现有的作品主要专注于汽车,自动驾驶卡车算法和模型仍然需要额外的开发。在本文中,我们介绍了智能自动驾驶卡车系统。我们所呈现的系统由三个主要组成部分组成,1)一个现实的交通仿真模块,用于在测试场景中产生现实的交通流量,2)设计和评估了在现实世界部署中模仿实际卡车响应的高保真卡车模型,3 )具有基于学习的决策算法和多模轨迹策划仪的智能计划模块,考虑到卡车的约束,道路斜率变化和周围的交通流量。我们为每个组分单独提供定量评估,以证明每个部件的保真度和性能。我们还将我们的建议系统部署在真正的卡车上,并进行真实的世界实验,表明我们的系统能力缓解了SIM-TO-REAL差距。我们的代码可以在https://github.com/inceptioresearch/iits提供
translated by 谷歌翻译
自动驾驶汽车是一项不断发展的技术,旨在通过自动操作从车道变更到超车来提高安全性,可访问性,效率和便利性。超车是自动驾驶汽车最具挑战性的操作之一,当前的自动超车技术仅限于简单情况。本文研究了如何通过允许动作流产来提高自主超车的安全性。我们提出了一个基于深层Q网络的决策过程,以确定是否以及何时需要中止超车的操作。拟议的算法在与交通情况不同的模拟中进行了经验评估,这表明所提出的方法可以改善超车手动过程中的安全性。此外,使用自动班车Iseauto在现实世界实验中证明了该方法。
translated by 谷歌翻译
随着自动组件比例越来越多的新兴车辆系统提供了最佳控制的机会,以减轻交通拥堵和提高效率。最近有兴趣将深入增强学习(DRL)应用于这些非线性动力学系统,以自动设计有效的控制策略。尽管DRL是无模型的概念优势,但研究通常仍依赖于对特定车辆系统的艰苦训练设置。这是对各种车辆和机动性系统有效分析的关键挑战。为此,本文贡献了一种简化的用于车辆微仿真的方法,并以最少的手动设计发现了高性能控制策略。提出了一种可变的代理,多任务方法,以优化车辆部分观察到的马尔可夫决策过程。该方法在混合自治交通系统上进行了实验验证,该系统是自动化的。在六种不同的开放或封闭交通系统的所有配置中都可以观察到经验改进,通常比人类驾驶基线的15-60%。该研究揭示了许多紧急行为类似于缓解波浪,交通信号传导和坡道计量。最后,对新兴行为进行了分析,以产生可解释的控制策略,这些控制策略已通过学习的控制策略进行了验证。
translated by 谷歌翻译
由于交通环境的复杂性和波动性,自主驾驶中的决策是一个显着难的问题。在这个项目中,我们使用深度Q-network,以及基于规则的限制来使车道变化的决定。可以通过将高级横向决策与基于低级规则的轨迹监视相结合来获得安全高效的车道改变行为。预计该代理商在培训中,在实际的UDAcity模拟器中进行了适当的车道更换操作,总共100次发作。结果表明,基于规则的DQN比DQN方法更好地执行。基于规则的DQN达到0.8的安全速率和47英里/小时的平均速度
translated by 谷歌翻译
对于自动驾驶汽车而言,遍历交叉点是一个具有挑战性的问题,尤其是当交叉路口没有交通控制时。最近,由于其成功处理自动驾驶任务,深厚的强化学习受到了广泛的关注。在这项工作中,我们解决了使用新颖的课程进行深入增强学习的问题的问题。拟议的课程导致:1)与未经课程训练的代理人相比,增强剂学习代理的更快的训练过程和2)表现更好。我们的主要贡献是两个方面:1)提供一个独特的课程,用于训练深入的强化学习者,2)显示了所提出的课程在未信号的交叉遍历任务中的应用。该框架期望自动驾驶汽车的感知系统对周围环境进行了处理。我们在Comonroad运动计划模拟器中测试我们的TTTERTIONS和四向交集的方法。
translated by 谷歌翻译
在典型的自主驾驶堆栈中,计划和控制系统代表了两个最关键的组件,其中传感器检索并通过感知算法处理的数据用于实施安全舒适的自动驾驶行为。特别是,计划模块可以预测自动驾驶汽车应遵循正确的高级操作的路径,而控制系统则执行一系列低级动作,控制转向角度,油门和制动器。在这项工作中,我们提出了一个无模型的深钢筋学习计划者培训一个可以预测加速度和转向角度的神经网络,从而获得了一个单个模块,可以使用自我自我的本地化和感知算法处理的数据来驱动车辆-驾车。特别是,在模拟中进行了全面训练的系统能够在模拟和帕尔马市现实世界中的无障碍环境中平稳驱动,证明该系统具有良好的概括能力,也可以驱动驱动在培训方案之外的那些部分。此外,为了将系统部署在真正的自动驾驶汽车上,并减少模拟和现实世界中的差距,我们还开发了一个由微小的神经网络表示的模块,能够在期间重现真正的车辆动态行为模拟的培训。
translated by 谷歌翻译
在多机构动态交通情况下的自主驾驶具有挑战性:道路使用者的行为不确定,很难明确建模,并且自我车辆应与他们应用复杂的谈判技巧,例如屈服,合并和交付,以实现,以实现在各种环境中都有安全有效的驾驶。在这些复杂的动态场景中,传统的计划方法主要基于规则,并且通常会导致反应性甚至过于保守的行为。因此,他们需要乏味的人类努力来维持可行性。最近,基于深度学习的方法显示出令人鼓舞的结果,具有更好的概括能力,但手工工程的工作较少。但是,它们要么是通过有监督的模仿学习(IL)来实施的,该学习遭受了数据集偏见和分配不匹配问题,要么接受了深入强化学习(DRL)的培训,但专注于一种特定的交通情况。在这项工作中,我们建议DQ-GAT实现可扩展和主动的自主驾驶,在这些驾驶中,基于图形注意力的网络用于隐式建模相互作用,并采用了深层Q学习来以无聊的方式训练网络端到端的网络。 。在高保真驾驶模拟器中进行的广泛实验表明,我们的方法比以前的基于学习的方法和传统的基于规则的方法获得了更高的成功率,并且在可见和看不见的情况下都可以更好地摆脱安全性和效率。此外,轨迹数据集的定性结果表明,我们所学的政策可以通过实时速度转移到现实世界中。演示视频可在https://caipeide.github.io/dq-gat/上找到。
translated by 谷歌翻译
与人类驾驶相比,自动驾驶汽车有可能降低事故率。此外,这是自动车辆在过去几年中快速发展的动力。在高级汽车工程师(SAE)自动化级别中,车辆和乘客的安全责任从驾驶员转移到自动化系统,因此对这种系统进行彻底验证至关重要。最近,学术界和行业将基于方案的评估作为道路测试的互补方法,减少了所需的整体测试工作。在将系统的缺陷部署在公共道路上之前,必须确定系统的缺陷,因为没有安全驱动程序可以保证这种系统的可靠性。本文提出了基于强化学习(RL)基于场景的伪造方法,以在人行横道交通状况中搜索高风险场景。当正在测试的系统(SUT)不满足要求时,我们将场景定义为风险。我们的RL方法的奖励功能是基于英特尔的责任敏感安全性(RSS),欧几里得距离以及与潜在碰撞的距离。
translated by 谷歌翻译
人类感知机器人导航有一系列应用程序,其中移动机器人对普通人类环境中的人们带来多功能援助。虽然现有研究主要集中在以独立,故意个人为独立的,但人们进入群体;因此,移动机器人必须在围绕人们时尊重人群。本文探讨了使用深度加强学习的基于动态组形成的学习群体感知导航策略。通过仿真实验,我们展示了与忽视人类群体的基线政策相比,群体感知政策实现了更大的机器人导航性能(例如,较少的碰撞),尽量减少侵犯社会规范和不适,并减少机器人对行人的运动影响。我们的成果有助于发展社会导航和移动机器人将移动机器人集成到人类环境中。
translated by 谷歌翻译