由于交通环境的复杂性和波动性,自主驾驶中的决策是一个显着难的问题。在这个项目中,我们使用深度Q-network,以及基于规则的限制来使车道变化的决定。可以通过将高级横向决策与基于低级规则的轨迹监视相结合来获得安全高效的车道改变行为。预计该代理商在培训中,在实际的UDAcity模拟器中进行了适当的车道更换操作,总共100次发作。结果表明,基于规则的DQN比DQN方法更好地执行。基于规则的DQN达到0.8的安全速率和47英里/小时的平均速度
translated by 谷歌翻译
决策模块使自动车辆能够在复杂的城市环境中达到适当的演习,尤其是交叉路口情况。这项工作提出了一种深度加强学习(DRL)基于无罪的自动车辆的无罪化交叉口的左转决策框架。所研究的自动化车辆的目的是在四向无信号化交叉路口中进行高效和安全的左转操纵。已漏洞的DRL方法包括深Q学习(DQL)和双DQL。仿真结果表明,所提出的决策策略可以有效地降低碰撞率并提高运输效率。这项工作还揭示了构造的左转控制结构具有实时应用的巨大潜力。
translated by 谷歌翻译
最近,自主驾驶社会上有许多进展,吸引了学术界和工业的很多关注。然而,现有的作品主要专注于汽车,自动驾驶卡车算法和模型仍然需要额外的开发。在本文中,我们介绍了智能自动驾驶卡车系统。我们所呈现的系统由三个主要组成部分组成,1)一个现实的交通仿真模块,用于在测试场景中产生现实的交通流量,2)设计和评估了在现实世界部署中模仿实际卡车响应的高保真卡车模型,3 )具有基于学习的决策算法和多模轨迹策划仪的智能计划模块,考虑到卡车的约束,道路斜率变化和周围的交通流量。我们为每个组分单独提供定量评估,以证明每个部件的保真度和性能。我们还将我们的建议系统部署在真正的卡车上,并进行真实的世界实验,表明我们的系统能力缓解了SIM-TO-REAL差距。我们的代码可以在https://github.com/inceptioresearch/iits提供
translated by 谷歌翻译
由于交通的固有复杂性和不确定性,自主驾驶决策是一项具有挑战性的任务。例如,相邻的车辆可能随时改变其车道或超越,以通过慢速车辆或帮助交通流量。预期周围车辆的意图,估算其未来状态并将其整合到自动化车辆的决策过程中,可以提高复杂驾驶场景中自动驾驶的可靠性。本文提出了一种基于预测的深入强化学习(PDRL)决策模型,该模型在公路驾驶决策过程中考虑了周围车辆的操纵意图。该模型是使用真实流量数据训练的,并通过模拟平台在各种交通条件下进行了测试。结果表明,与深入的增强学习(DRL)模型相比,提出的PDRL模型通过减少碰撞数量来改善决策绩效,从而导致更安全的驾驶。
translated by 谷歌翻译
然而,由于各种交通/道路结构方案以及人类驾驶员行为的长时间分布,自动驾驶的感应,感知和本地化取得了重大进展,因此,对于智能车辆来说,这仍然是一个持开放态度的挑战始终知道如何在有可用的传感 /感知 /本地化信息的道路上做出和执行最佳决定。在本章中,我们讨论了人工智能,更具体地说,强化学习如何利用运营知识和安全反射来做出战略性和战术决策。我们讨论了一些与强化学习解决方案的鲁棒性及其对自动驾驶驾驶策略的实践设计有关的具有挑战性的问题。我们专注于在高速公路上自动驾驶以及增强学习,车辆运动控制和控制屏障功能的整合,从而实现了可靠的AI驾驶策略,可以安全地学习和适应。
translated by 谷歌翻译
自动驾驶汽车是一项不断发展的技术,旨在通过自动操作从车道变更到超车来提高安全性,可访问性,效率和便利性。超车是自动驾驶汽车最具挑战性的操作之一,当前的自动超车技术仅限于简单情况。本文研究了如何通过允许动作流产来提高自主超车的安全性。我们提出了一个基于深层Q网络的决策过程,以确定是否以及何时需要中止超车的操作。拟议的算法在与交通情况不同的模拟中进行了经验评估,这表明所提出的方法可以改善超车手动过程中的安全性。此外,使用自动班车Iseauto在现实世界实验中证明了该方法。
translated by 谷歌翻译
我们解决了由具有不同驱动程序行为的道路代理人填充的密集模拟交通环境中的自我车辆导航问题。由于其异构行为引起的代理人的不可预测性,这种环境中的导航是挑战。我们提出了一种新的仿真技术,包括丰富现有的交通模拟器,其具有与不同程度的侵略性程度相对应的行为丰富的轨迹。我们在驾驶员行为建模算法的帮助下生成这些轨迹。然后,我们使用丰富的模拟器培训深度加强学习(DRL)策略,包括一组高级车辆控制命令,并在测试时间使用此策略来执行密集流量的本地导航。我们的政策隐含地模拟了交通代理商之间的交互,并计算了自助式驾驶员机动,例如超速,超速,编织和突然道路变化的激进驾驶员演习的安全轨迹。我们增强的行为丰富的模拟器可用于生成由对应于不同驱动程序行为和流量密度的轨迹组成的数据集,我们的行为的导航方案可以与最先进的导航算法相结合。
translated by 谷歌翻译
决策对于自动驾驶的车道变化至关重要。强化学习(RL)算法旨在确定各种情况下的行为价值,因此它们成为解决决策问题的有前途的途径。但是,运行时安全性较差,阻碍了基于RL的决策策略,从实践中进行了复杂的驾驶任务。为了解决这个问题,本文将人类的示范纳入了基于RL的决策策略中。人类受试者在驾驶模拟器中做出的决定被视为安全的示范,将其存储到重播缓冲液中,然后用来增强RL的训练过程。建立了一个复杂的车道变更任务,以检查开发策略的性能。仿真结果表明,人类的演示可以有效地提高RL决策的安全性。而拟议的策略超过了其他基于学习的决策策略,就多种驾驶表演而言。
translated by 谷歌翻译
Decision-making strategy for autonomous vehicles de-scribes a sequence of driving maneuvers to achieve a certain navigational mission. This paper utilizes the deep reinforcement learning (DRL) method to address the continuous-horizon decision-making problem on the highway. First, the vehicle kinematics and driving scenario on the freeway are introduced. The running objective of the ego automated vehicle is to execute an efficient and smooth policy without collision. Then, the particular algorithm named proximal policy optimization (PPO)-enhanced DRL is illustrated. To overcome the challenges in tardy training efficiency and sample inefficiency, this applied algorithm could realize high learning efficiency and excellent control performance. Finally, the PPO-DRL-based decision-making strategy is estimated from multiple perspectives, including the optimality, learning efficiency, and adaptability. Its potential for online application is discussed by applying it to similar driving scenarios.
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
自动驾驶在过去二十年中吸引了重要的研究兴趣,因为它提供了许多潜在的好处,包括释放驾驶和减轻交通拥堵的司机等。尽管进展有前途,但车道变化仍然是自治车辆(AV)的巨大挑战,特别是在混合和动态的交通方案中。最近,强化学习(RL)是一种强大的数据驱动控制方法,已被广泛探索了在令人鼓舞的效果中的通道中的车道改变决策。然而,这些研究的大多数研究专注于单车展,并且在多个AVS与人类驱动车辆(HDV)共存的情况下,道路变化已经受到稀缺的关注。在本文中,我们在混合交通公路环境中制定了多个AVS的车道改变决策,作为多功能增强学习(Marl)问题,其中每个AV基于相邻AV的动作使车道变化的决定和HDV。具体地,使用新颖的本地奖励设计和参数共享方案开发了一种多代理优势演员批评网络(MA2C)。特别是,提出了一种多目标奖励功能来纳入燃油效率,驾驶舒适度和自主驾驶的安全性。综合实验结果,在三种不同的交通密度和各级人类司机侵略性下进行,表明我们所提出的Marl框架在效率,安全和驾驶员舒适方面始终如一地优于几个最先进的基准。
translated by 谷歌翻译
自主驾驶有可能彻底改变流动性,因此是一个积极的研究领域。实际上,自动驾驶汽车的行为必须是可以接受的,即高效,安全和可解释的。尽管香草钢筋学习(RL)找到了表现的行为策略,但它们通常是不安全且无法解释的。安全性是通过安全的RL方法引入的,但是它们仍然无法解释,因为学习的行为在没有分别进行建模的情况下共同优化了安全性和性能。可解释的机器学习很少应用于RL。本文提出了SAFEDQN,它允许在仍然有效的同时使自动驾驶汽车的行为安全可解释。 SAFEDQN在算法上透明的同时,在预期风险和效用的效用之间提供了可以理解的语义权衡。我们表明,SAFEDQN为各种场景找到了可解释且安全的驾驶政策,并展示了最先进的显着性技术如何帮助评估风险和实用性。
translated by 谷歌翻译
许多现实世界的应用程序都可以作为多机构合作问题进行配置,例如网络数据包路由和自动驾驶汽车的协调。深入增强学习(DRL)的出现为通过代理和环境的相互作用提供了一种有前途的多代理合作方法。但是,在政策搜索过程中,传统的DRL解决方案遭受了多个代理具有连续动作空间的高维度。此外,代理商政策的动态性使训练非平稳。为了解决这些问题,我们建议采用高级决策和低水平的个人控制,以进行有效的政策搜索,提出一种分层增强学习方法。特别是,可以在高级离散的动作空间中有效地学习多个代理的合作。同时,低水平的个人控制可以减少为单格强化学习。除了分层增强学习外,我们还建议对手建模网络在学习过程中对其他代理的政策进行建模。与端到端的DRL方法相反,我们的方法通过以层次结构将整体任务分解为子任务来降低学习的复杂性。为了评估我们的方法的效率,我们在合作车道变更方案中进行了现实世界中的案例研究。模拟和现实世界实验都表明我们的方法在碰撞速度和收敛速度中的优越性。
translated by 谷歌翻译
本文提出了一个基于加固学习(RL)的电动连接车辆(CV)的生态驾驶框架,以提高信号交叉点的车辆能效。通过整合基于型号的汽车策略,改变车道的政策和RL政策来确保车辆代理的安全操作。随后,制定了马尔可夫决策过程(MDP),该过程使车辆能够执行纵向控制和横向决策,从而共同优化了交叉口附近CVS的CAR跟踪和改变车道的行为。然后,将混合动作空间参数化为层次结构,从而在动态交通环境中使用二维运动模式训练代理。最后,我们所提出的方法从基于单车的透视和基于流的透视图中在Sumo软件中进行了评估。结果表明,我们的策略可以通过学习适当的动作方案来大大减少能源消耗,而不会中断其他人类驱动的车辆(HDVS)。
translated by 谷歌翻译
行人在场的运动控制算法对于开发安全可靠的自动驾驶汽车(AV)至关重要。传统运动控制算法依赖于手动设计的决策政策,这些政策忽略了AV和行人之间的相互作用。另一方面,深度强化学习的最新进展允许在没有手动设计的情况下自动学习政策。为了解决行人在场的决策问题,作者介绍了一个基于社会价值取向和深入强化学习(DRL)的框架,该框架能够以不同的驾驶方式生成决策政策。该政策是在模拟环境中使用最先进的DRL算法培训的。还引入了适合DRL训练的新型计算效率的行人模型。我们执行实验以验证我们的框架,并对使用两种不同的无模型深钢筋学习算法获得的策略进行了比较分析。模拟结果表明,开发的模型如何表现出自然的驾驶行为,例如短暂的驾驶行为,以促进行人的穿越。
translated by 谷歌翻译
Traditional planning and control methods could fail to find a feasible trajectory for an autonomous vehicle to execute amongst dense traffic on roads. This is because the obstacle-free volume in spacetime is very small in these scenarios for the vehicle to drive through. However, that does not mean the task is infeasible since human drivers are known to be able to drive amongst dense traffic by leveraging the cooperativeness of other drivers to open a gap. The traditional methods fail to take into account the fact that the actions taken by an agent affect the behaviour of other vehicles on the road. In this work, we rely on the ability of deep reinforcement learning to implicitly model such interactions and learn a continuous control policy over the action space of an autonomous vehicle. The application we consider requires our agent to negotiate and open a gap in the road in order to successfully merge or change lanes. Our policy learns to repeatedly probe into the target road lane while trying to find a safe spot to move in to. We compare against two model-predictive control-based algorithms and show that our policy outperforms them in simulation.
translated by 谷歌翻译
预计自动驾驶技术不仅可以提高移动性和道路安全性,还可以提高能源效率的益处。在可预见的未来,自动车辆(AVS)将在与人机车辆共享的道路上运行。为了保持安全性和活力,同时尽量减少能耗,AV规划和决策过程应考虑自动自动驾驶车辆与周围的人机车辆之间的相互作用。在本章中,我们描述了一种通过基于认知层次理论和强化学习开发人的驾驶员行为建模来开发共用道路上的节能自主驾驶政策的框架。
translated by 谷歌翻译
交叉点是自主行驶中最复杂和事故的城市场景之一,其中制造安全和计算有效的决策是非微不足道的。目前的研究主要关注简化的交通状况,同时忽略了混合交通流量的存在,即车辆,骑自行车者和行人。对于城市道路而言,不同的参与者导致了一个非常动态和复杂的互动,从而冒着学习智能政策的困难。本文在集成决策和控制框架中开发动态置换状态表示,以处理与混合业务流的信号化交集。特别地,该表示引入了编码功能和总和运算符,以构建来自环境观察的驱动状态,能够处理不同类型和变体的交通参与者。构建了受约束的最佳控制问题,其中目标涉及跟踪性能,并且不同参与者和信号灯的约束分别设计以确保安全性。我们通过离线优化编码函数,值函数和策略函数来解决这个问题,其中编码函数给出合理的状态表示,然后用作策略和值函数的输入。禁止策略培训旨在重用从驾驶环境中的观察,并且使用时间通过时间来利用策略函数和编码功能联合。验证结果表明,动态置换状态表示可以增强IDC的驱动性能,包括具有大边距的舒适性,决策合规性和安全性。训练有素的驾驶政策可以实现复杂交叉口的高效和平滑通过,同时保证驾驶智能和安全性。
translated by 谷歌翻译
在典型的自主驾驶堆栈中,计划和控制系统代表了两个最关键的组件,其中传感器检索并通过感知算法处理的数据用于实施安全舒适的自动驾驶行为。特别是,计划模块可以预测自动驾驶汽车应遵循正确的高级操作的路径,而控制系统则执行一系列低级动作,控制转向角度,油门和制动器。在这项工作中,我们提出了一个无模型的深钢筋学习计划者培训一个可以预测加速度和转向角度的神经网络,从而获得了一个单个模块,可以使用自我自我的本地化和感知算法处理的数据来驱动车辆-驾车。特别是,在模拟中进行了全面训练的系统能够在模拟和帕尔马市现实世界中的无障碍环境中平稳驱动,证明该系统具有良好的概括能力,也可以驱动驱动在培训方案之外的那些部分。此外,为了将系统部署在真正的自动驾驶汽车上,并减少模拟和现实世界中的差距,我们还开发了一个由微小的神经网络表示的模块,能够在期间重现真正的车辆动态行为模拟的培训。
translated by 谷歌翻译
对于自动驾驶汽车而言,遍历交叉点是一个具有挑战性的问题,尤其是当交叉路口没有交通控制时。最近,由于其成功处理自动驾驶任务,深厚的强化学习受到了广泛的关注。在这项工作中,我们解决了使用新颖的课程进行深入增强学习的问题的问题。拟议的课程导致:1)与未经课程训练的代理人相比,增强剂学习代理的更快的训练过程和2)表现更好。我们的主要贡献是两个方面:1)提供一个独特的课程,用于训练深入的强化学习者,2)显示了所提出的课程在未信号的交叉遍历任务中的应用。该框架期望自动驾驶汽车的感知系统对周围环境进行了处理。我们在Comonroad运动计划模拟器中测试我们的TTTERTIONS和四向交集的方法。
translated by 谷歌翻译