近似组合优化已成为量子计算机最有前途的应用领域之一,特别是近期的应用领域之一。在这项工作中,我们专注于求解最大切割问题的量子近似优化算法(QAOA)。具体而言,我们解决了QAOA中的两个问题,如何选择初始参数,以及如何随后培训参数以找到最佳解决方案。对于前者来说,我们将图形神经网络(GNN)作为QAOA参数的初始化例程,在热启动技术中添加到文献。我们不仅显示了GNN方法概括,而且不仅可以增加图形尺寸,还可以增加图形大小,这是其他热启动技术无法使用的功能。为了培训QAOA,我们测试了几个优化员以获得MaxCut问题。这些包括在文献中提出的量子感知/不可知论者,我们还包括机器学习技术,如加强和元学习。通过纳入这些初始化和优化工具包,我们展示了如何培训QAOA作为端到端可分散的管道。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
近年来,变异量子算法(例如量子近似优化算法(QAOA))越来越受欢迎,因为它们提供了使用NISQ设备来解决硬组合优化问题的希望。但是,众所周知,在低深度,QAOA的某些位置限制限制了其性能。为了超越这些局限性,提出了QAOA的非本地变体,即递归QAOA(RQAOA),以提高近似溶液的质量。 RQAOA的研究比QAOA的研究较少,例如,对于哪种情况,它可能无法提供高质量的解决方案。但是,由于我们正在解决$ \ mathsf {np} $ - 硬问题(特别是Ising旋转模型),因此预计RQAOA确实会失败,这提出了设计更好的组合优化量子算法的问题。本着这种精神,我们识别和分析了RQAOA失败的情况,并基于此,提出了增强的学习增强的RQAOA变体(RL-RQAOA),从而改善了RQAOA。我们表明,RL-RQAOA的性能改善了RQAOA:RL-RQAOA在这些识别的实例中,RQAOA表现不佳,并且在RQAOA几乎是最佳的情况下也表现出色。我们的工作体现了增强学习与量子(启发)优化之间的潜在有益的协同作用,这是针对硬性问题的新的,甚至更好的启发式方法。
translated by 谷歌翻译
近年来,机器学习的巨大进步已经开始对许多科学和技术的许多领域产生重大影响。在本文的文章中,我们探讨了量子技术如何从这项革命中受益。我们在说明性示例中展示了过去几年的科学家如何开始使用机器学习和更广泛的人工智能方法来分析量子测量,估计量子设备的参数,发现新的量子实验设置,协议和反馈策略,以及反馈策略,以及通常改善量子计算,量子通信和量子模拟的各个方面。我们重点介绍了公开挑战和未来的可能性,并在未来十年的一些投机愿景下得出结论。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
当前可用的量子计算机受到限制,包括硬件噪声和数量有限的Qubits。因此,利用经典优化器来训练参数化的量子电路的变异量子算法已引起对量子技术的近期实际应用的极大关注。在这项工作中,我们采取概率的观点,并将经典优化重新制定为贝叶斯后部的近似。通过将成本函数与量子电路参数相结合的成本函数结合到最小化的成本函数来诱导后验。我们描述了一个基于最大后验点估计值的降低策略。量子H1-2计算机上的实验表明,所得电路的执行速度更快,嘈杂的速度比没有降低策略的训练的电路较小。随后,我们根据随机梯度Langevin动力学描述了后验采样策略。关于三个不同问题的数值模拟表明,该策略能够从后部完整产生样品并避免局部优势。
translated by 谷歌翻译
我们展示了如何使用图形神经网络来解决规范的图形着色问题。我们将颜色框架为多类节点分类问题,并基于统计物理Potts模型利用无监督的培训策略。对其他多级问题(例如社区检测,数据聚类和最低集团封面问题)的概括是简单的。我们提供数值基准结果,并通过端到端的应用程序说明了我们的方法,用于在全面的编码程序框架内实现现实世界调度案例。我们的优化方法在PAR或优于现有求解器上执行,并能够扩展到数百万变量的问题。
translated by 谷歌翻译
我们提出了一种基于政策梯度加强学习的技术来查找量子电路的近似汇编的方法。随机策略的选择允许我们在概率分布方面的优化问题,而不是变分参数。这意味着通过优化分布参数而不是通过电路自由角来搜索最佳配置。所以我们可以始终计算梯度,但是提供了策略是可微分的。我们在数值上表明这种方法比使用梯度方法的方法更竞争,即使在存在去极化的噪声的情况下,也可以分析地争论为什么这一情况。这种变分的另一个方法的另一个有趣特征是它不需要单独的寄存器和远程交互来估计终点保真度。我们预计这些技术在其他背景下与训练变分电路相关
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
关于参数化量子电路(PQC)的成本景观知之甚少。然而,PQC被用于量子神经网络和变异量子算法中,这可能允许近期量子优势。此类应用需要良好的优化器来培训PQC。最近的作品集中在专门针对PQC量身定制的量子意识优化器上。但是,对成本景观的无知可能会阻碍这种优化者的进步。在这项工作中,我们在分析上证明了PQC的两个结果:(1)我们在PQC中发现了指数较大的对称性,在成本景观中产生了最小值的呈指数较大的变性。或者,这可以作为相关超参数空间体积的指数减少。 (2)我们研究了噪声下对称性的弹性,并表明,尽管它在Unital噪声下是保守的,但非阴道通道可以打破这些对称性并提高最小值的变性,从而导致多个新的局部最小值。基于这些结果,我们引入了一种称为基于对称的最小跳跃(SYMH)的优化方法,该方法利用了PQC中的基础对称性。我们的数值模拟表明,在存在与当前硬件相当的水平上,SYMH在存在非阴性噪声的情况下提高了整体优化器性能。总体而言,这项工作从局部门转换中得出了大规模电路对称性,并使用它们来构建一种噪声吸引的优化方法。
translated by 谷歌翻译
组合优化问题可以通过启发式算法(例如模拟退火(SA))来解决,该算法旨在通过热搜索空间在大型搜索空间中找到全局最小值溶液。该算法通过马尔可夫链蒙特卡洛技术生成新的解决方案。后者可能会导致严重的局限性,例如缓慢的收敛性和在较小温度下保持在同一局部搜索空间内的趋势。为了克服这些缺点,我们使用了变异经典退火(VCA)框架,该框架将自回归复发性神经网络(RNN)与传统退火相结合来彼此独立于样品解决方案。在本文中,我们证明了使用VCA作为解决现实世界优化问题的方法的潜力。与SA相比,我们探索了VCA的性能,以解决三个流行的优化问题:最大切割问题(最大切割),护士调度问题(NSP)和旅行推销员问题(TSP)。对于所有三个问题,我们发现VCA在渐近极限中的平均表现要优于SA。有趣的是,我们达到了TSP最高可达256美元的城市的大型系统尺寸。我们得出的结论是,在最佳情况下,当SA无法找到最佳解决方案时,VCA可以作为一个很好的选择。
translated by 谷歌翻译
我们提出了一个通用图形神经网络体系结构,可以作为任何约束满意度问题(CSP)作为末端2端搜索启发式训练。我们的体系结构可以通过政策梯度下降进行无监督的培训,以纯粹的数据驱动方式为任何CSP生成问题的特定启发式方法。该方法基于CSP的新型图表,既是通用又紧凑的,并且使我们能够使用一个GNN处理所有可能的CSP实例,而不管有限的Arity,关系或域大小。与以前的基于RL的方法不同,我们在全局搜索动作空间上运行,并允许我们的GNN在随机搜索的每个步骤中修改任何数量的变量。这使我们的方法能够正确利用GNN的固有并行性。我们进行了彻底的经验评估,从随机数据(包括图形着色,Maxcut,3-SAT和Max-K-Sat)中学习启发式和重要的CSP。我们的方法表现优于先验的神经组合优化的方法。它可以在测试实例上与常规搜索启发式竞争,甚至可以改善几个数量级,结构上比训练中看到的数量级更为复杂。
translated by 谷歌翻译
即使在数十年的量子计算开发之后,通常在经典同行中具有指数加速的通常有用量子算法的示例是稀缺的。线性代数定位量子机学习(QML)的量子算法中的最新进展作为这种有用的指数改进的潜在来源。然而,在一个意想不到的发展中,最近一系列的“追逐化”结果同样迅速消除了几个QML算法的指数加速度的承诺。这提出了关键问题是否是其他线性代数QML算法的指数加速度持续存在。在本文中,我们通过该镜头研究了Lloyd,Garnerone和Zanardi的拓扑数据分析算法后面的量子算法方法。我们提供了证据表明,该算法解决的问题通过表明其自然概括与模拟一个清洁量子位模型很难地难以进行棘手的 - 这被广泛认为需要在经典计算机上需要超时时间 - 并且非常可能免疫追逐。基于此结果,我们为等级估计和复杂网络分析等问题提供了许多新的量子算法,以及其经典侵害性的复杂性 - 理论上。此外,我们分析了近期实现的所提出的量子算法的适用性。我们的结果为全面吹嘘和限制的量子计算机提供了许多有用的应用程序,具有古典方法的保证指数加速,恢复了线性代数QML的一些潜力,以成为量子计算的杀手应用之一。
translated by 谷歌翻译
量子计算机是下一代设备,有望执行超出古典计算机范围的计算。实现这一目标的主要方法是通过量子机学习,尤其是量子生成学习。由于量子力学的固有概率性质,因此可以合理地假设量子生成学习模型(QGLM)可能会超过其经典对应物。因此,QGLM正在从量子物理和计算机科学社区中受到越来越多的关注,在这些QGLM中,可以在近期量子机上有效实施各种QGLM,并提出了潜在的计算优势。在本文中,我们从机器学习的角度回顾了QGLM的当前进度。特别是,我们解释了这些QGLM,涵盖了量子电路出生的机器,量子生成的对抗网络,量子玻尔兹曼机器和量子自动编码器,作为经典生成学习模型的量子扩展。在这种情况下,我们探讨了它们的内在关系及其根本差异。我们进一步总结了QGLM在常规机器学习任务和量子物理学中的潜在应用。最后,我们讨论了QGLM的挑战和进一步研究指示。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
量子机学习(QML)被认为是近术语量子设备最有前途的应用之一。然而,量子机器学习模型的优化呈现出众多挑战,从硬件的缺陷和导航指数上缩放的希尔伯特空间中的缺陷产生了巨大的挑战。在这项工作中,我们评估了深度增强学习中的当代方法的潜力,以增加量子变分电路中的增强基于梯度的优化例程。我们发现强化学习增强了优化器,始终突出噪声环境中的渐变血统。所有代码和备用重量都可用于复制结果或在https://github.com/lockwo/rl_qvc_opt上部署模型。
translated by 谷歌翻译
基于变异方法的量子算法是构建量子溶液的最有前途的方法之一,并在过去几年中发现了无数的应用。尽管具有适应性和简单性,但它们的可扩展性和选择合适的ATZ的选择仍然是主要的挑战。在这项工作中,我们报告了基于嵌套的蒙特卡洛树搜索(MCTS)的算法框架,并与组合多部队的bastit相结合( CMAB)模型,用于量子电路的自动设计。通过数值实验,我们证明了应用于各种问题的算法,包括量子化学中的地面能量问题,在图上进行量子优化,求解线性方程的系统,并找到编码编码与现有方法相比,用于量子误差检测代码的电路,结果表明我们的电路设计算法可以探索更大的搜索空间并优化较大系统的量子电路,从而显示出多功能性和可扩展性。
translated by 谷歌翻译
Quantum Machine Learning(QML)提供了一种强大的灵活的范式,可用于编程近期量子计算机,具有化学,计量,材料科学,数据科学和数学的应用。这里,一个以参数化量子电路的形式训练ANSATZ,以实现感兴趣的任务。然而,最近出现了挑战表明,由于随机性或硬件噪声引起的平坦训练景观,因此难以训练深度尖锐钽。这激励了我们的工作,在那里我们提出了一种可变的结构方法来构建QML的Ansatzes。我们的方法称为VANS(可变ANSATZ),将一组规则应用于在优化期间以知识的方式在增长和(至关重要的)中删除量子门。因此,VANS非常适合通过保持ANSATZ浅扫描来缓解训练性和与噪声相关的问题。我们在变分量子Eigensolver中使用Vans进行冷凝物质和量子化学应用,并且还在量子自身化学器中进行数据压缩,显示所有情况的成功结果。
translated by 谷歌翻译
变形量子算法(VQAS)可以是噪声中间级量子(NISQ)计算机上的量子优势的路径。自然问题是NISQ设备的噪声是否对VQA性能的基本限制。我们严格证明对嘈杂的VQAS进行严重限制,因为噪音导致训练景观具有贫瘠高原(即消失梯度)。具体而言,对于考虑的本地Pauli噪声,我们证明梯度在Qubits $ N $的数量中呈指数呈指数增长,如果Ansatz的深度以$ N $线性增长。这些噪声诱导的贫瘠强韧(NIBPS)在概念上不同于无辐射贫瘠强度,其与随机参数初始化相关联。我们的结果是为通用Ansatz制定的,该通用ansatz包括量子交替运算符ANSATZ和酉耦合簇Ansatz等特殊情况。对于前者来说,我们的数值启发式展示了用于现实硬件噪声模型的NIBP现象。
translated by 谷歌翻译
距离措施为机器学习和模式识别中的许多流行算法提供了基础。根据算法正在处理的数据类型,可以使用不同的距离概念。对于图形数据,重要概念是图表编辑距离(GED),从而在使它们相同所需的操作方面测量两个图之间的两个图之间的相似度。由于计算GED的复杂性与NP难题相同,因此考虑近似解决方案是合理的。在本文中,我们向计算GED的两个量子方法的比较研究:量子退火和变分量子算法,其分别是指当前可用的两种类型的量子硬件,即量子退火器和基于栅极的量子计算机。考虑到当前嘈杂的中间级量子计算机的状态,我们基于这些量子算法性能的原理上的原理测试研究。
translated by 谷歌翻译