我们提出了一个通用图形神经网络体系结构,可以作为任何约束满意度问题(CSP)作为末端2端搜索启发式训练。我们的体系结构可以通过政策梯度下降进行无监督的培训,以纯粹的数据驱动方式为任何CSP生成问题的特定启发式方法。该方法基于CSP的新型图表,既是通用又紧凑的,并且使我们能够使用一个GNN处理所有可能的CSP实例,而不管有限的Arity,关系或域大小。与以前的基于RL的方法不同,我们在全局搜索动作空间上运行,并允许我们的GNN在随机搜索的每个步骤中修改任何数量的变量。这使我们的方法能够正确利用GNN的固有并行性。我们进行了彻底的经验评估,从随机数据(包括图形着色,Maxcut,3-SAT和Max-K-Sat)中学习启发式和重要的CSP。我们的方法表现优于先验的神经组合优化的方法。它可以在测试实例上与常规搜索启发式竞争,甚至可以改善几个数量级,结构上比训练中看到的数量级更为复杂。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
命题模型计数或#SAT是计算布尔公式满足分配数量的问题。来自不同应用领域的许多问题,包括许多离散的概率推理问题,可以将#SAT求解器解决的模型计数问题转化为模型计数问题。但是,确切的#sat求解器通常无法扩展到工业规模实例。在本文中,我们提出了Neuro#,这是一种学习分支启发式方法,以提高特定问题家族中的实例的精确#sat求解器的性能。我们通过实验表明,我们的方法减少了类似分布的持有实例的步骤,并将其推广到同一问题家族的更大实例。它能够在具有截然不同的结构的许多不同问题家族上实现这些结果。除了步骤计数的改进外,Neuro#还可以在某些问题家族的较大实例上在较大的实例上实现壁式锁定速度的订单,尽管开头查询了模型。
translated by 谷歌翻译
We present the Neural Satisfiability Network (NSNet), a general neural framework that models satisfiability problems as probabilistic inference and meanwhile exhibits proper explainability. Inspired by the Belief Propagation (BP), NSNet uses a novel graph neural network (GNN) to parameterize BP in the latent space, where its hidden representations maintain the same probabilistic interpretation as BP. NSNet can be flexibly configured to solve both SAT and #SAT problems by applying different learning objectives. For SAT, instead of directly predicting a satisfying assignment, NSNet performs marginal inference among all satisfying solutions, which we empirically find is more feasible for neural networks to learn. With the estimated marginals, a satisfying assignment can be efficiently generated by rounding and executing a stochastic local search. For #SAT, NSNet performs approximate model counting by learning the Bethe approximation of the partition function. Our evaluations show that NSNet achieves competitive results in terms of inference accuracy and time efficiency on multiple SAT and #SAT datasets.
translated by 谷歌翻译
回溯搜索算法通常用于解决约束满足问题(CSP)。回溯搜索的效率在很大程度上取决于可变排序启发式。目前,最常用的启发式是根据专家知识进行手工制作的。在本文中,我们提出了一种基于深度的加强学习方法,可以自动发现新的变量订购启发式,更好地适用于给定类CSP实例。我们显示,直接优化搜索成本很难用于自动启动,并建议优化在搜索树中到达叶节点的预期成本。为了捕获变量和约束之间的复杂关系,我们设计基于图形神经网络的表示方案,可以处理具有不同大小和约束的CSP实例。随机CSP实例上的实验结果表明,学习的政策在最小化搜索树大小的方面优于古典手工制作的启发式,并且可以有效地推广到比训练中使用的实例。
translated by 谷歌翻译
随着深度学习技术的快速发展,各种最近的工作试图应用图形神经网络(GNN)来解决诸如布尔满足(SAT)之类的NP硬问题,这表明了桥接机器学习与象征性差距的潜力。然而,GNN预测的解决方案的质量并未在文献中进行很好地研究。在本文中,我们研究了GNNS在学习中解决最大可满足性(MaxSAT)问题的能力,从理论和实践角度来看。我们构建了两种GNN模型来学习来自基准的MaxSAT实例的解决方案,并显示GNN通过实验评估解决MaxSAT问题的有吸引力。我们还基于算法对准理论,我们还提出了GNNS可以在一定程度上学会解决MaxSAT问题的影响的理论解释。
translated by 谷歌翻译
The design of good heuristics or approximation algorithms for NP-hard combinatorial optimization problems often requires significant specialized knowledge and trial-and-error. Can we automate this challenging, tedious process, and learn the algorithms instead? In many real-world applications, it is typically the case that the same optimization problem is solved again and again on a regular basis, maintaining the same problem structure but differing in the data. This provides an opportunity for learning heuristic algorithms that exploit the structure of such recurring problems. In this paper, we propose a unique combination of reinforcement learning and graph embedding to address this challenge. The learned greedy policy behaves like a meta-algorithm that incrementally constructs a solution, and the action is determined by the output of a graph embedding network capturing the current state of the solution. We show that our framework can be applied to a diverse range of optimization problems over graphs, and learns effective algorithms for the Minimum Vertex Cover, Maximum Cut and Traveling Salesman problems.
translated by 谷歌翻译
Steiner树问题(STP)在图中旨在在连接给定的顶点集的图表中找到一个最小权重的树。它是一种经典的NP - 硬组合优化问题,具有许多现实世界应用(例如,VLSI芯片设计,运输网络规划和无线传感器网络)。为STP开发了许多精确和近似算法,但它们分别遭受高计算复杂性和弱案例解决方案保证。还开发了启发式算法。但是,它们中的每一个都需要应用域知识来设计,并且仅适用于特定方案。最近报道的观察结果,同一NP-COLLECLIAL问题的情况可能保持相同或相似的组合结构,但主要在其数据中不同,我们调查将机器学习技术应用于STP的可行性和益处。为此,我们基于新型图形神经网络和深增强学习设计了一种新型模型瓦坎。 Vulcan的核心是一种新颖的紧凑型图形嵌入,将高瞻度图形结构数据(即路径改变信息)转换为低维矢量表示。鉴于STP实例,Vulcan使用此嵌入来对其路径相关的信息进行编码,并基于双层Q网络(DDQN)将编码的图形发送到深度加强学习组件,以找到解决方案。除了STP之外,Vulcan还可以通过将解决方案(例如,SAT,MVC和X3C)来减少到STP来找到解决方案。我们使用现实世界和合成数据集进行广泛的实验,展示了vulcan的原型,并展示了它的功效和效率。
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
近年来,在平衡(超级)图分配算法的设计和评估中取得了重大进展。我们调查了过去十年的实用算法的趋势,用于平衡(超级)图形分区以及未来的研究方向。我们的工作是对先前有关该主题的调查的更新。特别是,该调查还通过涵盖了超图形分区和流算法来扩展先前的调查,并额外关注并行算法。
translated by 谷歌翻译
命题满足(SAT)是一个NP完整的问题,它影响了许多研究领域,例如计划,验证和安全性。主流现代SAT求解器基于冲突驱动的子句学习(CDCL)算法。最近的工作旨在通过图神经网络(GNNS)产生的预测来改善其可变分支启发式方法来增强CDCL SAT求解器。但是,到目前为止,这种方法要么尚未使解决方案更有效,要么需要在线访问大量的GPU资源。为了使GNN改进实用,本文提出了一种称为Neurocomb的方法,该方法以两个见解为基础:(1)重要变量和条款的预测可以与动态分支相结合,为更有效的混合分支策略,(2)它是(2)它是足以在SAT解决开始之前仅查询神经模型一次。 NeuroComb被实施,以增强称为Minisat的经典CDCL求解器,以及最新的CDCL求解器,称为葡萄糖。结果,它允许Minisat在最近的SATCOMP-2021竞争问题设置中解决11%和葡萄糖更多的问题,仅计算资源需求只有一个GPU。因此,NeuroComb是通过机器学习改善SAT解决的有效和实用方法。
translated by 谷歌翻译
用于图形组合优化问题的神经网络溶剂的端到端培训,例如旅行销售人员问题(TSP)最近看到了感兴趣的激增,但在几百节节点的图表中保持棘手和效率低下。虽然最先进的学习驱动的方法对于TSP在培训的古典索引时与古典求解器密切相关,但它们无法通过实际尺度的实际情况概括到更大的情况。这项工作提出了一个端到端的神经组合优化流水线,统一几个卷纸,以确定促进比在训练中看到的实例的概括的归纳偏差,模型架构和学习算法。我们的受控实验提供了第一个原则上调查这种零拍摄的概括,揭示了超越训练数据的推断需要重新思考从网络层和学习范例到评估协议的神经组合优化流水线。此外,我们分析了深入学习的最近进步,通过管道的镜头路由问题,并提供新的方向,以刺激未来的研究。
translated by 谷歌翻译
图形上的组合优化问题(COP)是优化的基本挑战。强化学习(RL)最近成为解决这些问题的新框架,并证明了令人鼓舞的结果。但是,大多数RL解决方案都采用贪婪的方式来逐步构建解决方案,因此不可避免地对动作序列构成不必要的依赖性,并且需要许多特定于问题的设计。我们提出了一个通用的RL框架,该框架不仅表现出最先进的经验表现,而且还推广到各种各样的警察。具体而言,我们将状态定义为解决问题实例的解决方案,并将操作作为对该解决方案的扰动。我们利用图形神经网络(GNN)为给定的问题实例提取潜在表示,然后应用深Q学习以获得通过翻转或交换顶点标签逐渐完善解决方案的策略。实验是在最大$ k $ cut和旅行推销员问题上进行的,并且针对一系列基于学习的启发式基线实现了绩效改善。
translated by 谷歌翻译
Generating diverse solutions to the Boolean Satisfiability Problem (SAT) is a hard computational problem with practical applications for testing and functional verification of software and hardware designs. We explore the way to generate such solutions using Denoising Diffusion coupled with a Graph Neural Network to implement the denoising function. We find that the obtained accuracy is similar to the currently best purely neural method and the produced SAT solutions are highly diverse, even if the system is trained with non-random solutions from a standard solver.
translated by 谷歌翻译
最近出现了许多子图增强图神经网络(GNN),可证明增强了标准(消息通话)GNN的表达能力。但是,对这些方法之间的相互关系和weisfeiler层次结构的关系有限。此外,当前的方法要么使用给定尺寸的所有子图,要随机均匀地对其进行采样,或者使用手工制作的启发式方法,而不是学习以数据驱动的方式选择子图。在这里,我们提供了一种统一的方法来研究此类体系结构,通过引入理论框架并扩展了亚图增强GNN的已知表达结果。具体而言,我们表明,增加子图的大小总是会增加表达能力,并通过将它们与已建立的$ k \ text { - } \ Mathsf {Wl} $ hierArchy联系起来,从而更好地理解其局限性。此外,我们还使用最近通过复杂的离散概率分布进行反向传播的方法探索了学习对子图进行采样的不同方法。从经验上讲,我们研究了不同子图增强的GNN的预测性能,表明我们的数据驱动体系结构与非DATA驱动的亚图增强图形神经网络相比,在标准基准数据集上提高了对标准基准数据集的预测准确性,同时减少了计算时间。
translated by 谷歌翻译
最近的研究表明,图形神经网络(GNNS)可以学习适用于典型的多层Perceptron(MLP)的运动控制的政策,具有卓越的转移和多任务性能(Wang等,2018; Huang Et al。,2020)。到目前为止,由于传感器和致动器的数量增长,GNN的性能随着传感器和执行器的数量而迅速变化,结果已经限于对小剂量的训练。在监督学习环境中使用GNN的关键动机是它们对大图的适用性,但尚未实现这种益处用于运动控制。我们将宽松的GNN架构中的弱点识别出导致这种较差的缩放:在网络中的MLP中过度拟合,用于编码,解码和传播消息。为了打击这一点,我们引入了雪花,一种用于高维连续控制的GNN训练方法,可以冻结受影响的网络部分中的参数。雪花显着提高了GNN在大型代理上的运动控制的性能,现在与MLP的性能相匹配,以及具有卓越的转移性能。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
为混合整数线性编程问题(MILLS)找到高质量解决方案对于许多实际应用非常重要。在这方面,提出了精炼启发式局部分支(LB)来生产改进解决方案,并且对MILP中的本地搜索方法的开发产生了高度影响力。该算法迭代地探索由所谓的本地分支约束定义的一系列解决方案邻域,即,限制与参考解决方案的距离的线性不等式。对于LB算法,邻域大小的选择对于性能至关重要。虽然它是由原始LB方案中的保守值初始化的,但我们的新观察是最佳规模强烈依赖于特定的MILP实例。在这项工作中,我们调查搜索附近的大小与底层LB算法的行为之间的关系,我们设计了一种基于倾斜的框架,用于引导LB启发式的邻居搜索。该框架由两阶段战略组成。对于第一阶段,训练缩放的回归模型以通过回归任务在第一迭代中预测LB邻域的大小。在第二阶段,我们利用加强学习和设计加强的邻域搜索策略,以动态调整随后的迭代处的大小。我们计算地表明,确实可以学习邻域大小,导致改进的性能,并且整个算法在实例大小相对于实例大小概括,并且显着地跨越实例概括。
translated by 谷歌翻译