用于图形组合优化问题的神经网络溶剂的端到端培训,例如旅行销售人员问题(TSP)最近看到了感兴趣的激增,但在几百节节点的图表中保持棘手和效率低下。虽然最先进的学习驱动的方法对于TSP在培训的古典索引时与古典求解器密切相关,但它们无法通过实际尺度的实际情况概括到更大的情况。这项工作提出了一个端到端的神经组合优化流水线,统一几个卷纸,以确定促进比在训练中看到的实例的概括的归纳偏差,模型架构和学习算法。我们的受控实验提供了第一个原则上调查这种零拍摄的概括,揭示了超越训练数据的推断需要重新思考从网络层和学习范例到评估协议的神经组合优化流水线。此外,我们分析了深入学习的最近进步,通过管道的镜头路由问题,并提供新的方向,以刺激未来的研究。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
关于组合优化的机器学习的最新作品表明,基于学习的方法可以优于速度和性能方面的启发式方法。在本文中,我们考虑了在定向的无环图上找到最佳拓扑顺序的问题,重点是编译器中出现的记忆最小化问题。我们提出了一种基于端到端的机器学习方法,用于使用编码器框架,用于拓扑排序。我们的编码器是一种基于注意力的新图形神经网络体系结构,称为\ emph {topoformer},它使用DAG的不同拓扑转换来传递消息。由编码器产生的节点嵌入被转换为节点优先级,解码器使用这些嵌入,以生成概率分布对拓扑顺序。我们在称为分层图的合成生成图的数据集上训练我们的模型。我们表明,我们的模型的表现优于或在PAR上,具有多个拓扑排序基线,同时在最多2K节点的合成图上明显更快。我们还在一组现实世界计算图上训练和测试我们的模型,显示了性能的改进。
translated by 谷歌翻译
我们提出了一个通用图形神经网络体系结构,可以作为任何约束满意度问题(CSP)作为末端2端搜索启发式训练。我们的体系结构可以通过政策梯度下降进行无监督的培训,以纯粹的数据驱动方式为任何CSP生成问题的特定启发式方法。该方法基于CSP的新型图表,既是通用又紧凑的,并且使我们能够使用一个GNN处理所有可能的CSP实例,而不管有限的Arity,关系或域大小。与以前的基于RL的方法不同,我们在全局搜索动作空间上运行,并允许我们的GNN在随机搜索的每个步骤中修改任何数量的变量。这使我们的方法能够正确利用GNN的固有并行性。我们进行了彻底的经验评估,从随机数据(包括图形着色,Maxcut,3-SAT和Max-K-Sat)中学习启发式和重要的CSP。我们的方法表现优于先验的神经组合优化的方法。它可以在测试实例上与常规搜索启发式竞争,甚至可以改善几个数量级,结构上比训练中看到的数量级更为复杂。
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
近年来,近年来,加强学习与图形神经网络(GNN)架构相结合,可以学会解决硬组合优化问题:给定原始输入数据和评估者指导过程,这个想法是自动学习策略返回可行和高质量的输出。最近的工作表明了有希望的结果,但后者主要在旅行推销员问题(TSP)和类似的抽象变体上进行评估,例如分割输送车辆路由问题(SDVRP)。在本文中,我们分析了如何以及最近的神经架构如何应用于实际重要性的图表问题。因此,我们将这些架构系统上“将这些架构转移到电力和信道分配问题(PCAP),其具有实际相关性,例如无线网络中的无线电资源分配。我们的实验结果表明现有的架构(I)仍然无法捕获图形结构特征,并且(II)不适合图表上的动作更改图形属性的问题。在一个积极的票据上,我们表明,增强了距离编码问题的结构表示是迈向学习多用途自主求解器的仍然雄心勃勃的目标的有希望的一步。
translated by 谷歌翻译
Steiner树问题(STP)在图中旨在在连接给定的顶点集的图表中找到一个最小权重的树。它是一种经典的NP - 硬组合优化问题,具有许多现实世界应用(例如,VLSI芯片设计,运输网络规划和无线传感器网络)。为STP开发了许多精确和近似算法,但它们分别遭受高计算复杂性和弱案例解决方案保证。还开发了启发式算法。但是,它们中的每一个都需要应用域知识来设计,并且仅适用于特定方案。最近报道的观察结果,同一NP-COLLECLIAL问题的情况可能保持相同或相似的组合结构,但主要在其数据中不同,我们调查将机器学习技术应用于STP的可行性和益处。为此,我们基于新型图形神经网络和深增强学习设计了一种新型模型瓦坎。 Vulcan的核心是一种新颖的紧凑型图形嵌入,将高瞻度图形结构数据(即路径改变信息)转换为低维矢量表示。鉴于STP实例,Vulcan使用此嵌入来对其路径相关的信息进行编码,并基于双层Q网络(DDQN)将编码的图形发送到深度加强学习组件,以找到解决方案。除了STP之外,Vulcan还可以通过将解决方案(例如,SAT,MVC和X3C)来减少到STP来找到解决方案。我们使用现实世界和合成数据集进行广泛的实验,展示了vulcan的原型,并展示了它的功效和效率。
translated by 谷歌翻译
In the last few years, graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. This emerging field has witnessed an extensive growth of promising techniques that have been applied with success to computer science, mathematics, biology, physics and chemistry. But for any successful field to become mainstream and reliable, benchmarks must be developed to quantify progress. This led us in March 2020 to release a benchmark framework that i) comprises of a diverse collection of mathematical and real-world graphs, ii) enables fair model comparison with the same parameter budget to identify key architectures, iii) has an open-source, easy-to-use and reproducible code infrastructure, and iv) is flexible for researchers to experiment with new theoretical ideas. As of December 2022, the GitHub repository has reached 2,000 stars and 380 forks, which demonstrates the utility of the proposed open-source framework through the wide usage by the GNN community. In this paper, we present an updated version of our benchmark with a concise presentation of the aforementioned framework characteristics, an additional medium-sized molecular dataset AQSOL, similar to the popular ZINC, but with a real-world measured chemical target, and discuss how this framework can be leveraged to explore new GNN designs and insights. As a proof of value of our benchmark, we study the case of graph positional encoding (PE) in GNNs, which was introduced with this benchmark and has since spurred interest of exploring more powerful PE for Transformers and GNNs in a robust experimental setting.
translated by 谷歌翻译
广泛研究和使用旅行推销员问题等图形问题,如旅行推销员问题,或发现最小的施泰纳树在数据工程和计算机科学中使用。通常,在现实世界应用中,图表的特征往往会随着时间的推移而变化,因此,找到问题的解决方案变得具有挑战性。许多图表问题的动态版本是运输,电信和社交网络中普遍世界问题的关键。近年来,利用深度学习技术来寻找NP-Hard图组合问题的启发式解决方案,因为这些学习的启发式可以有效地找到近最佳解决方案。但是,大多数现有的学习启发式方法都关注静态图问题。动态性质使NP-Hard图表问题更具挑战性,并且现有方法无法找到合理的解决方案。在本文中,我们提出了一种名为Cabl时间关注的新型建筑,并利用加固学习(GTA-RL)来学习基于图形的动态组合优化问题的启发式解决方案。 GTA-RL架构包括能够嵌入组合问题实例的时间特征的编码器和能够动态地关注嵌入功能的解码器,以找到给定组合问题实例的解决方案。然后,我们将架构扩展到学习HeuRistics的组合优化问题的实时版本,其中问题的所有输入特征是未知的,而是实时学习。我们针对几种最先进的基于学习的算法和最佳求解器的实验结果表明,我们的方法在动态和效率方面,在有效性和最佳求解器方面优于基于最先进的学习方法。实时图组合优化。
translated by 谷歌翻译
越来越多的机器学习方法用于解决旅行推销员问题。但是,这些方法通常需要解决训练或使用需要大量调整的复杂强化学习方法的实例。为了避免这些问题,我们引入了一种新颖的无监督学习方法。我们使用针对TSP的整数线性程序的放松来构建不需要正确实例标签的损耗函数。随着离散化的可变,其最小值与最佳或近乎最佳的解决方案一致。此外,此损耗函数是可区分的,因此可以直接用于训练神经网络。我们将损失函数与图形神经网络和欧几里得和非对称TSP的设计受控实验一起使用。我们的方法优于监督学习不需要大型标记数据集的优势。此外,我们的方法的性能超过了不对称TSP的强化学习,并且与欧几里得实例的强化学习相当。与增强学习相比,我们的方法也更稳定,更容易训练。
translated by 谷歌翻译
The design of good heuristics or approximation algorithms for NP-hard combinatorial optimization problems often requires significant specialized knowledge and trial-and-error. Can we automate this challenging, tedious process, and learn the algorithms instead? In many real-world applications, it is typically the case that the same optimization problem is solved again and again on a regular basis, maintaining the same problem structure but differing in the data. This provides an opportunity for learning heuristic algorithms that exploit the structure of such recurring problems. In this paper, we propose a unique combination of reinforcement learning and graph embedding to address this challenge. The learned greedy policy behaves like a meta-algorithm that incrementally constructs a solution, and the action is determined by the output of a graph embedding network capturing the current state of the solution. We show that our framework can be applied to a diverse range of optimization problems over graphs, and learns effective algorithms for the Minimum Vertex Cover, Maximum Cut and Traveling Salesman problems.
translated by 谷歌翻译
组合优化的神经方法(CO)配备了一种学习机制,以发现解决复杂现实世界问题的强大启发式方法。尽管出现了能够在单一镜头中使用高质量解决方案的神经方法,但最先进的方法通常无法充分利用他们可用的解决时间。相比之下,手工制作的启发式方法可以很好地执行高效的搜索并利用给他们的计算时间,但包含启发式方法,这些启发式方法很难适应要解决的数据集。为了为神经CO方法提供强大的搜索程序,我们提出了模拟引导的光束搜索(SGB),该搜索(SGB)在固定宽度的树搜索中检查了候选解决方案,既是神经网络学习的政策又是模拟(推出)确定有希望的。我们将SGB与有效的主动搜索(EAS)进一步融合,其中SGB提高了EAS中反向传播的解决方案的质量,EAS提高了SGB中使用的策略的质量。我们评估了有关众所周知的CO基准的方法,并表明SGB可显着提高在合理的运行时假设下发现的解决方案的质量。
translated by 谷歌翻译
深度强化学习(DRL)赋予了各种人工智能领域,包括模式识别,机器人技术,推荐系统和游戏。同样,图神经网络(GNN)也证明了它们在图形结构数据的监督学习方面的出色表现。最近,GNN与DRL用于图形结构环境的融合引起了很多关注。本文对这些混合动力作品进行了全面评论。这些作品可以分为两类:(1)算法增强,其中DRL和GNN相互补充以获得更好的实用性; (2)特定于应用程序的增强,其中DRL和GNN相互支持。这种融合有效地解决了工程和生命科学方面的各种复杂问题。基于审查,我们进一步分析了融合这两个领域的适用性和好处,尤其是在提高通用性和降低计算复杂性方面。最后,集成DRL和GNN的关键挑战以及潜在的未来研究方向被突出显示,这将引起更广泛的机器学习社区的关注。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
最近的研究表明,图形神经网络(GNNS)可以学习适用于典型的多层Perceptron(MLP)的运动控制的政策,具有卓越的转移和多任务性能(Wang等,2018; Huang Et al。,2020)。到目前为止,由于传感器和致动器的数量增长,GNN的性能随着传感器和执行器的数量而迅速变化,结果已经限于对小剂量的训练。在监督学习环境中使用GNN的关键动机是它们对大图的适用性,但尚未实现这种益处用于运动控制。我们将宽松的GNN架构中的弱点识别出导致这种较差的缩放:在网络中的MLP中过度拟合,用于编码,解码和传播消息。为了打击这一点,我们引入了雪花,一种用于高维连续控制的GNN训练方法,可以冻结受影响的网络部分中的参数。雪花显着提高了GNN在大型代理上的运动控制的性能,现在与MLP的性能相匹配,以及具有卓越的转移性能。
translated by 谷歌翻译
广泛适用的在线匹配问题中的挑战在于在未来输入不确定性时进行不可撤销的作业。大多数理论上的政策本质上都是近视或贪婪。在定期重复匹配过程的实际应用程序中,可以利用基础数据分布来更好地决策。我们提出了一个端到端的强化学习框架,用于根据历史数据的反复试验得出更好的匹配政策。我们设计了一组神经网络体系结构,设计功能表示,并在两个在线匹配问题中对它们进行经验评估:边缘加权的在线双方匹配和在线次级两部分匹配。我们表明,大多数学习方法在四个合成和现实世界数据集上的经典基线算法始终如一地表现更好。平均而言,我们提出的模型在各种合成和现实世界数据集上提高了3-10%的匹配质量。我们的代码可在https://github.com/lyeskhalil/corl上公开获取。
translated by 谷歌翻译
学习解决组合优化问题,例如车辆路径问题,提供古典运营研究求解器和启发式的巨大计算优势。最近开发的深度加强学习方法迭代或顺序地构建一组个别旅游的最初给定的解决方案。然而,大多数现有的基于学习的方法都无法为固定数量的车辆工作,从而将客户的复杂分配问题绕过APRIORI给定数量的可用车辆。另一方面,这使得它们不太适合真实应用程序,因为许多物流服务提供商依赖于提供的解决方案提供了特定的界限船队规模,并且无法适应车辆数量的短期更改。相比之下,我们提出了一个强大的监督深度学习框架,在尊重APRiori固定数量的可用车辆的同时构建完整的旅游计划。与高效的后处理方案结合,我们的监督方法不仅要快得多,更容易训练,而且还实现了包含车辆成本的实际方面的竞争结果。在彻底的控制实验中,我们将我们的方法与我们展示稳定性能的多种最先进的方法进行比较,同时利用较少的车辆并在相关工作的实验协议中存在一些亮点。
translated by 谷歌翻译
In recent years, methods based on deep neural networks, and especially Neural Improvement (NI) models, have led to a revolution in the field of combinatorial optimization. Given an instance of a graph-based problem and a candidate solution, they are able to propose a modification rule that improves its quality. However, existing NI approaches only consider node features and node-wise positional encodings to extract the instance and solution information, respectively. Thus, they are not suitable for problems where the essential information is encoded in the edges. In this paper, we present a NI model to solve graph-based problems where the information is stored either in the nodes, in the edges, or in both of them. We incorporate the NI model as a building block of hill-climbing-based algorithms to efficiently guide the election of neighborhood operations considering the solution at that iteration. Conducted experiments show that the model is able to recommend neighborhood operations that are in the $99^{th}$ percentile for the Preference Ranking Problem. Moreover, when incorporated to hill-climbing algorithms, such as Iterated or Multi-start Local Search, the NI model systematically outperforms the conventional versions. Finally, we demonstrate the flexibility of the model by extending the application to two well-known problems: the Traveling Salesman Problem and the Graph Partitioning Problem.
translated by 谷歌翻译
机器学习(ML)方法已成为解决车辆路由问题的有用工具,可以与流行的启发式方法或独立模型结合使用。但是,当解决不同大小或不同分布的问题时,当前的方法的概括不佳。结果,车辆路由中的ML见证了一个扩展阶段,为特定问题实例创建了新方法,这些方法在较大的问题大小上变得不可行。本文旨在通过理解和改善当前现有模型,即Kool等人的注意模型来鼓励该领域的整合。我们确定了VRP概括的两个差异类别。第一个是基于问题本身固有的差异,第二个与限制模型概括能力的建筑弱点有关。我们的贡献变成了三倍:我们首先通过适应Kool等人来靶向模型差异。方法及其基于alpha-entmax激活的稀疏动态注意力的损耗函数。然后,我们通过使用混合实例训练方法来靶向固有的差异,该方法已被证明在某些情况下超过了单个实例培训。最后,我们介绍了推理水平数据增强的框架,该框架通过利用模型缺乏旋转和扩张变化的不变性来提高性能。
translated by 谷歌翻译
解决组合优化(CO)问题的传统求解器通常是由人类专家设计的。最近,人们对利用深度学习,尤其是深度强化学习的兴趣激增,自动为CO学习有效的求解器。由此产生的新范式称为神经组合优化(NCO)。但是,在经验或理论上,NCO的优势和缺点与其他方法的优势尚未得到很好的研究。在这项工作中,我们介绍了NCO求解器和替代求解器的全面比较研究。具体而言,将旅行推销员问题作为测试床问题,我们根据五个方面(即有效性,效率,稳定性,可扩展性和概括能力)评估求解器的性能。我们的结果表明,通常,NCO方法学到的求解器几乎在所有这些方面仍然没有传统求解器。前者的潜在好处将是在有足够的培训实例时,他们在小规模的问题实例上的卓越时间和能源效率。我们希望这项工作将有助于更好地理解NCO的优势和劣势,并提供全面的评估协议,以进一步对NCO进行针对其他方法的基准测试。
translated by 谷歌翻译