近年来,变异量子算法(例如量子近似优化算法(QAOA))越来越受欢迎,因为它们提供了使用NISQ设备来解决硬组合优化问题的希望。但是,众所周知,在低深度,QAOA的某些位置限制限制了其性能。为了超越这些局限性,提出了QAOA的非本地变体,即递归QAOA(RQAOA),以提高近似溶液的质量。 RQAOA的研究比QAOA的研究较少,例如,对于哪种情况,它可能无法提供高质量的解决方案。但是,由于我们正在解决$ \ mathsf {np} $ - 硬问题(特别是Ising旋转模型),因此预计RQAOA确实会失败,这提出了设计更好的组合优化量子算法的问题。本着这种精神,我们识别和分析了RQAOA失败的情况,并基于此,提出了增强的学习增强的RQAOA变体(RL-RQAOA),从而改善了RQAOA。我们表明,RL-RQAOA的性能改善了RQAOA:RL-RQAOA在这些识别的实例中,RQAOA表现不佳,并且在RQAOA几乎是最佳的情况下也表现出色。我们的工作体现了增强学习与量子(启发)优化之间的潜在有益的协同作用,这是针对硬性问题的新的,甚至更好的启发式方法。
translated by 谷歌翻译
随着真实世界量子计算的出现,参数化量子计算可以用作量子古典机器学习系统中的假设家庭的想法正在增加牵引力的增加。这种混合系统已经表现出潜力在监督和生成学习中解决现实世界任务,最近的作品已经在特殊的人工任务中建立了他们可提供的优势。然而,在加强学习的情况下,可以说是最具挑战性的,并且学习提升将是极为有价值的,在解决甚至标准的基准测试方面没有成功地取得了成功,也没有在典型算法上表达理论上的学习优势。在这项工作中,我们均达到两者。我们提出了一种使用很少的Qubits的混合量子古典强化学习模型,我们展示了可以有效地培训,以解决若干标准基准环境。此外,我们展示和正式证明,参数化量子电路解决了用于古典模型的棘手的某些学习任务的能力,包括当前最先进的深神经网络,在离散对数问题的广泛的经典硬度下。
translated by 谷歌翻译
近似组合优化已成为量子计算机最有前途的应用领域之一,特别是近期的应用领域之一。在这项工作中,我们专注于求解最大切割问题的量子近似优化算法(QAOA)。具体而言,我们解决了QAOA中的两个问题,如何选择初始参数,以及如何随后培训参数以找到最佳解决方案。对于前者来说,我们将图形神经网络(GNN)作为QAOA参数的初始化例程,在热启动技术中添加到文献。我们不仅显示了GNN方法概括,而且不仅可以增加图形尺寸,还可以增加图形大小,这是其他热启动技术无法使用的功能。为了培训QAOA,我们测试了几个优化员以获得MaxCut问题。这些包括在文献中提出的量子感知/不可知论者,我们还包括机器学习技术,如加强和元学习。通过纳入这些初始化和优化工具包,我们展示了如何培训QAOA作为端到端可分散的管道。
translated by 谷歌翻译
我们提出了一种基于政策梯度加强学习的技术来查找量子电路的近似汇编的方法。随机策略的选择允许我们在概率分布方面的优化问题,而不是变分参数。这意味着通过优化分布参数而不是通过电路自由角来搜索最佳配置。所以我们可以始终计算梯度,但是提供了策略是可微分的。我们在数值上表明这种方法比使用梯度方法的方法更竞争,即使在存在去极化的噪声的情况下,也可以分析地争论为什么这一情况。这种变分的另一个方法的另一个有趣特征是它不需要单独的寄存器和远程交互来估计终点保真度。我们预计这些技术在其他背景下与训练变分电路相关
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
近年来,机器学习的巨大进步已经开始对许多科学和技术的许多领域产生重大影响。在本文的文章中,我们探讨了量子技术如何从这项革命中受益。我们在说明性示例中展示了过去几年的科学家如何开始使用机器学习和更广泛的人工智能方法来分析量子测量,估计量子设备的参数,发现新的量子实验设置,协议和反馈策略,以及反馈策略,以及通常改善量子计算,量子通信和量子模拟的各个方面。我们重点介绍了公开挑战和未来的可能性,并在未来十年的一些投机愿景下得出结论。
translated by 谷歌翻译
Understanding the power and limitations of quantum access to data in machine learning tasks is primordial to assess the potential of quantum computing in artificial intelligence. Previous works have already shown that speed-ups in learning are possible when given quantum access to reinforcement learning environments. Yet, the applicability of quantum algorithms in this setting remains very limited, notably in environments with large state and action spaces. In this work, we design quantum algorithms to train state-of-the-art reinforcement learning policies by exploiting quantum interactions with an environment. However, these algorithms only offer full quadratic speed-ups in sample complexity over their classical analogs when the trained policies satisfy some regularity conditions. Interestingly, we find that reinforcement learning policies derived from parametrized quantum circuits are well-behaved with respect to these conditions, which showcases the benefit of a fully-quantum reinforcement learning framework.
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
具有很多玩家的非合作和合作游戏具有许多应用程序,但是当玩家数量增加时,通常仍然很棘手。由Lasry和Lions以及Huang,Caines和Malham \'E引入的,平均野外运动会(MFGS)依靠平均场外近似值,以使玩家数量可以成长为无穷大。解决这些游戏的传统方法通常依赖于以完全了解模型的了解来求解部分或随机微分方程。最近,增强学习(RL)似乎有望解决复杂问题。通过组合MFGS和RL,我们希望在人口规模和环境复杂性方面能够大规模解决游戏。在这项调查中,我们回顾了有关学习MFG中NASH均衡的最新文献。我们首先确定最常见的设置(静态,固定和进化)。然后,我们为经典迭代方法(基于最佳响应计算或策略评估)提供了一个通用框架,以确切的方式解决MFG。在这些算法和与马尔可夫决策过程的联系的基础上,我们解释了如何使用RL以无模型的方式学习MFG解决方案。最后,我们在基准问题上介绍了数值插图,并以某些视角得出结论。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
Quantum Computing在古典计算机上解决困难的计算任务的显着改进承诺。然而,为实际使用设计量子电路不是琐碎的目标,并且需要专家级知识。为了帮助这一努力,提出了一种基于机器学习的方法来构建量子电路架构。以前的作品已经证明,经典的深度加强学习(DRL)算法可以成功构建量子电路架构而没有编码的物理知识。但是,这些基于DRL的作品不完全在更换设备噪声中的设置,从而需要大量的培训资源来保持RL模型最新。考虑到这一点,我们持续学习,以提高算法的性能。在本文中,我们介绍了深度Q-Learning(PPR-DQL)框架的概率策略重用来解决这个电路设计挑战。通过通过各种噪声模式进行数值模拟,我们证明了具有PPR的RL代理能够找到量子栅极序列,以比从划痕训练的代理更快地生成双量标铃声状态。所提出的框架是一般的,可以应用于其他量子栅极合成或控制问题 - 包括量子器件的自动校准。
translated by 谷歌翻译
优化在离散变量上的高度复杂的成本/能源功能是不同科学学科和行业的许多公开问题的核心。一个主要障碍是在硬实例中的某些变量子集之间的出现,导致临界减慢或集体冻结了已知的随机本地搜索策略。通常需要指数计算工作来解冻这种变量,并探索配置空间的其他看不见的区域。在这里,我们通过开发自适应梯度的策略来介绍一个量子启发的非本球非识别蒙特卡罗(NMC)算法,可以有效地学习成本函数的关键实例的几何特征。该信息随行使用,以构造空间不均匀的热波动,用于以各种长度尺度集体未填充变量,规避昂贵的勘探与开发权衡。我们将算法应用于两个最具挑战性的组合优化问题:随机k可满足(K-SAT)附近计算阶段转换和二次分配问题(QAP)。我们在专业的确定性求解器和通用随机求解器上观察到显着的加速和鲁棒性。特别是,对于90%的随机4-SAT实例,我们发现了最佳专用确定性算法无法访问的解决方案,该算法(SP)具有最强的10%实例的解决方案质量的大小提高。我们还通过最先进的通用随机求解器(APT)显示出在最先进的通用随机求解器(APT)上的时间到溶液的两个数量级改善。
translated by 谷歌翻译
在过去的十年中,深入的强化学习(RL)已经取得了长足的进步。同时,最先进的RL算法在培训时间融合方面需要大量的计算预算。最近的工作已经开始通过量子计算的角度来解决这个问题,这有望为几项传统上的艰巨任务做出理论上的速度。在这项工作中,我们研究了一类混合量子古典RL算法,我们共同称为变异量子Q-NETWORKS(VQ-DQN)。我们表明,VQ-DQN方法受到导致学习政策分歧的不稳定性的约束,研究了基于经典模拟的既定结果的重复性,并执行系统的实验以识别观察到的不稳定性的潜在解释。此外,与大多数现有的量子增强学习中现有工作相反,我们在实际量子处理单元(IBM量子设备)上执行RL算法,并研究模拟和物理量子系统之间因实施不足而进行的行为差异。我们的实验表明,与文献中相反的主张相反,与经典方法相比,即使在没有物理缺陷的情况下进行模拟,也不能最终决定是否已知量子方法,也可以提供优势。最后,我们提供了VQ-DQN作为可再现的测试床的强大,通用且经过充分测试的实现,以实现未来的实验。
translated by 谷歌翻译
我们将数字化量子退火(QA)和量子近似优化算法(QAOA)应用于人工神经网络中监督学习的范式任务:二元切割的突触权优化。在与MaxCut常用的Qoaa应用程序方差,或对Quantum Spin-Chains接地状态准备,经典Hamiltonian的特征在于高度非局部多自旋相互作用。然而,我们为QAOA参数提供最佳顺利解决的证据,这些参数可在同一问题的典型实例之间转移,并且我们证明了Qaoa在传统Qa上的增强性能。我们还研究了QAOA优化景观几何形状在这个问题中的作用,表明QA中遇到的间隙闭合转变的不利影响也对我们实施QAOA实施的表现负面影响。
translated by 谷歌翻译
我们提出了新型量子加固学习(RL)方法的完整实现和模拟,并在数学上证明了量子优势。我们的方法详细说明了如何将振幅估计和Grover搜索结合到政策评估和改进方案中。我们首先开发量子策略评估(QPE),与类似的经典蒙特卡洛估计相比,它在四四方面更有效,并且基于有限马尔可夫决策过程(MDP)的量子机械实现。在QPE的基础上,我们得出了一种量子策略迭代,该迭代迭代可以反复使用Grover搜索来改善初始策略,直到达到最佳。最后,我们为两臂强盗MDP提供了算法的实现,然后我们进行了模拟。结果证实QPE在RL问题中提供了量子优势。
translated by 谷歌翻译
在线强化学习(RL)中的挑战之一是代理人需要促进对环境的探索和对样品的利用来优化其行为。无论我们是否优化遗憾,采样复杂性,状态空间覆盖范围或模型估计,我们都需要攻击不同的勘探开发权衡。在本文中,我们建议在分离方法组成的探索 - 剥削问题:1)“客观特定”算法(自适应)规定哪些样本以收集到哪些状态,似乎它可以访问a生成模型(即环境的模拟器); 2)负责尽可能快地生成规定样品的“客观无关的”样品收集勘探策略。建立最近在随机最短路径问题中进行探索的方法,我们首先提供一种算法,它给出了每个状态动作对所需的样本$ B(S,a)$的样本数量,需要$ \ tilde {o} (bd + d ^ {3/2} s ^ 2 a)收集$ b = \ sum_ {s,a} b(s,a)$所需样本的$时间步骤,以$ s $各国,$ a $行动和直径$ d $。然后我们展示了这种通用探索算法如何与“客观特定的”策略配对,这些策略规定了解决各种设置的样本要求 - 例如,模型估计,稀疏奖励发现,无需无成本勘探沟通MDP - 我们获得改进或新颖的样本复杂性保证。
translated by 谷歌翻译
距离措施为机器学习和模式识别中的许多流行算法提供了基础。根据算法正在处理的数据类型,可以使用不同的距离概念。对于图形数据,重要概念是图表编辑距离(GED),从而在使它们相同所需的操作方面测量两个图之间的两个图之间的相似度。由于计算GED的复杂性与NP难题相同,因此考虑近似解决方案是合理的。在本文中,我们向计算GED的两个量子方法的比较研究:量子退火和变分量子算法,其分别是指当前可用的两种类型的量子硬件,即量子退火器和基于栅极的量子计算机。考虑到当前嘈杂的中间级量子计算机的状态,我们基于这些量子算法性能的原理上的原理测试研究。
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
The design of good heuristics or approximation algorithms for NP-hard combinatorial optimization problems often requires significant specialized knowledge and trial-and-error. Can we automate this challenging, tedious process, and learn the algorithms instead? In many real-world applications, it is typically the case that the same optimization problem is solved again and again on a regular basis, maintaining the same problem structure but differing in the data. This provides an opportunity for learning heuristic algorithms that exploit the structure of such recurring problems. In this paper, we propose a unique combination of reinforcement learning and graph embedding to address this challenge. The learned greedy policy behaves like a meta-algorithm that incrementally constructs a solution, and the action is determined by the output of a graph embedding network capturing the current state of the solution. We show that our framework can be applied to a diverse range of optimization problems over graphs, and learns effective algorithms for the Minimum Vertex Cover, Maximum Cut and Traveling Salesman problems.
translated by 谷歌翻译