Wind turbine wake modelling is of crucial importance to accurate resource assessment, to layout optimisation, and to the operational control of wind farms. This work proposes a surrogate model for the representation of wind turbine wakes based on a state-of-the-art graph representation learning method termed a graph neural network. The proposed end-to-end deep learning model operates directly on unstructured meshes and has been validated against high-fidelity data, demonstrating its ability to rapidly make accurate 3D flow field predictions for various inlet conditions and turbine yaw angles. The specific graph neural network model employed here is shown to generalise well to unseen data and is less sensitive to over-smoothing compared to common graph neural networks. A case study based upon a real world wind farm further demonstrates the capability of the proposed approach to predict farm scale power generation. Moreover, the proposed graph neural network framework is flexible and highly generic and as formulated here can be applied to any steady state computational fluid dynamics simulations on unstructured meshes.
translated by 谷歌翻译
\ emph {几何深度学习}(GDL)的最新进展显示了其提供强大数据驱动模型的潜力。这提供了探索从图形数据中\ emph {部分微分方程}(PDES)控制的物理系统的新方法的动力。然而,尽管做出了努力和最近的成就,但几个研究方向仍未开发,进步仍然远非满足现实现象的身体要求。主要障碍之一是缺乏基准数据集和常见的物理评估协议。在本文中,我们提出了一个2-D Graph-Mesh数据集,以研究High Reynolds制度的机翼上的气流(从$ 10^6 $及以后)。我们还对翼型上的应力力引入指标,以评估重要的物理量的GDL模型。此外,我们提供广泛的GDL基准。
translated by 谷歌翻译
Surrogate models are necessary to optimize meaningful quantities in physical dynamics as their recursive numerical resolutions are often prohibitively expensive. It is mainly the case for fluid dynamics and the resolution of Navier-Stokes equations. However, despite the fast-growing field of data-driven models for physical systems, reference datasets representing real-world phenomena are lacking. In this work, we develop AirfRANS, a dataset for studying the two-dimensional incompressible steady-state Reynolds-Averaged Navier-Stokes equations over airfoils at a subsonic regime and for different angles of attacks. We also introduce metrics on the stress forces at the surface of geometries and visualization of boundary layers to assess the capabilities of models to accurately predict the meaningful information of the problem. Finally, we propose deep learning baselines on four machine learning tasks to study AirfRANS under different constraints for generalization considerations: big and scarce data regime, Reynolds number, and angle of attack extrapolation.
translated by 谷歌翻译
Computational fluid dynamics (CFD) is a valuable asset for patient-specific cardiovascular-disease diagnosis and prognosis, but its high computational demands hamper its adoption in practice. Machine-learning methods that estimate blood flow in individual patients could accelerate or replace CFD simulation to overcome these limitations. In this work, we consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models. We employ group-equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes and makes efficient use of training data. We run experiments on a large dataset of synthetic coronary arteries and find that our method estimates directional wall shear stress (WSS) with an approximation error of 7.6% and normalised mean absolute error (NMAE) of 0.4% while up to two orders of magnitude faster than CFD. Furthermore, we show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions. These results demonstrate the potential of our proposed method as a plugin replacement for CFD in the personalised prediction of hemodynamic vector and scalar fields.
translated by 谷歌翻译
在本文中,我们根据卷积神经网络训练湍流模型。这些学到的湍流模型改善了在模拟时为不可压缩的Navier-Stokes方程的溶解不足的低分辨率解。我们的研究涉及开发可区分的数值求解器,该求解器通过多个求解器步骤支持优化梯度的传播。这些属性的重要性是通过那些模型的出色稳定性和准确性来证明的,这些模型在训练过程中展开了更多求解器步骤。此外,我们基于湍流物理学引入损失项,以进一步提高模型的准确性。这种方法应用于三个二维的湍流场景,一种均匀的腐烂湍流案例,一个暂时进化的混合层和空间不断发展的混合层。与无模型模拟相比,我们的模型在长期A-posterii统计数据方面取得了重大改进,而无需将这些统计数据直接包含在学习目标中。在推论时,我们提出的方法还获得了相似准确的纯粹数值方法的实质性改进。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
随着风能的渗透到电网,能够预测大型风电场的预期电力生产变得越来越重要。深度学习(DL)模型可以在数据中学习复杂的模式,并在预测唤醒损失和预期的电力生产方面找到了广泛的成功。本文提出了一种基于关注的图形神经网络(GNN)的模块化框架,其中可以应用于图形块的任何所需组件。结果表明,该模型显着优于多层的Perceptron(MLP)和双向LSTM(BLSTM)模型,同时通过Vanilla GNN模型提供性能。此外,我们认为,所提出的图表架构可以通过为要使用的所需注意操作提供灵活性来轻松适应不同的应用,这可能取决于特定应用。通过分析注意力的重量,据表明,采用基于关注的GNN可以提供洞察模型学习的内容。特别是,注意网络似乎意识到与唤醒损失的一些物理直觉对齐的涡轮机依赖性。
translated by 谷歌翻译
流体(VOF)方法的体积被广泛用于多相流仿真中,以跟踪和定位两个不混溶的流体之间的界面。VOF方法的主要瓶颈是界面重建步骤,由于其高计算成本和非结构化网格的精度较低。我们建议基于图神经网络(GNN)的机器学习增强的VOF方法,以加速通用非结构化网格上的接口重建。我们首先开发一种方法来基于在非结构化网格上离散的抛物面表面生成合成数据集。然后,我们训练基于GNN的模型并执行概括测试。我们的结果表明,在工业背景下,基于GNN的界面重建方法的效率。
translated by 谷歌翻译
给定部分微分方程(PDE),面向目标的误差估计使我们能够了解诊断数量的兴趣数量(QOI)或目标的错误如何发生并积累在数值近似中,例如使用有限元方法。通过将误差估计分解为来自各个元素的贡献,可以制定适应方法,该方法可以修改网格,以最大程度地减少所得QOI误差的目的。但是,标准误差估计公式涉及真实的伴随解决方案,这在实践中是未知的。因此,通常的做法是用“富集”的近似值(例如,在更高的空间或精制的网格上)近似。这样做通常会导致计算成本的显着增加,这可能是损害(面向目标)自适应模拟的竞争力的瓶颈。本文的核心思想是通过选择性更换昂贵的误差估计步骤,并使用适当的配置和训练的神经网络开发“数据驱动”目标的网格适应方法。这样,甚至可以在不构造富集空间的情况下获得误差估计器。此处采用了逐元构造,该元素构造与网格几何相关的各种参数的局部值和基础问题物理物理作为输入,并且对误差估计器的相应贡献作为输出。我们证明,这种方法能够以降低的计算成本获得相同的准确性,对于与潮汐涡轮机周围流动相关的自适应网格测试用例,这些测试用例是通过其下游唤醒相互作用的,以及农场的整体功率输出作为将其视为QOI。此外,我们证明了元素元素方法意味着培训成本相当低。
translated by 谷歌翻译
通过Navier-Stokes方程的数值解决方案的计算流体动力学(CFD)仿真是从工程设计到气候建模的广泛应用中的重要工具。然而,CFD代码所需的计算成本和内存需求对于实际兴趣的流动可能变得非常高,例如在空气动力学形状优化中。该费用与流体流动控制方程的复杂性有关,其包括具有困难的解决方案的非线性部分衍生术语,导致长的计算时间和限制在迭代设计过程中可以测试的假设的数量。因此,我们提出了DeepCFD:基于卷积神经网络(CNN)的模型,其有效地近似于均匀稳态流动问题的解决方案。所提出的模型能够直接从使用最先进的CFD代码生成的地面真实数据的速度和压力场的完整解决方案的完整解决方案。使用DeepCFD,与标准CFD方法以低误差率的成本相比,我们发现高达3个数量级的加速。
translated by 谷歌翻译
计算流体动力学(CFD)是一种有价值的工具,用于动脉中血流动力学的个性化,非侵入性评估,但其复杂性和耗时的大自然在实践中禁止大规模使用。最近,已经研究了利用深度学习进行CFD参数的快速估计,如表面网格上的壁剪切应力(WSS)。然而,现有方法通常取决于表面网格的手工制作的重新参数化以匹配卷积神经网络架构。在这项工作中,我们建议使用Mesh卷积神经网络,该网状神经网络直接在CFD中使用的相同的有限元表面网格操作。我们在使用从CFD模拟中获得的地面真理培训并在两种合成冠状动脉模型的两种数据集上培训和评估我们的方法。我们表明我们灵活的深度学习模型可以准确地预测该表面网上的3D WSS矢量。我们的方法在少于5分钟内处理新网格,始终如一地实现$ \ LEQ $ 1.6 [%]的标准化平均值误差,并且在保持测试集中的90.5 [%]中位近似精度为90.5 [%]的峰值,比较以前发表的工作。这证明了CFD代理建模的可行性,使用网状卷积神经网络进行动脉模型中的血流动力学参数估计。
translated by 谷歌翻译
使用计算流体动力学(CFD)方法近似风流可能是耗时的。创建用于在观察风流量变化的同时以交互式设计原型的工具需要更简单的模型来模拟更快。代替运行数值近似导致的详细计算,深度学习中的数据驱动方法可能能够在一小部分中提供类似的结果。这项工作将使用CFD计算到计算3D流场的问题,以在建筑占地面积上使用CFD到基于2D图像到图像转换的问题,以预测行人高度水平的流场。我们调查使用生成的对冲网络(GAN),例如PIX2PIX [1]和CYCREGAN [2]代表各种域中的图像到图像转换任务以及U-Net AutoEncoder [ 3]。模型可以以数据驱动的方式学习数据集的基础分布,我们认为可以帮助模型从CFD中了解底层雷诺平均的Navier-Stokes(RANS)方程。我们在具有且没有高度信息的各种三维诈唬型建筑物上进行新型模拟数据集。此外,我们为生成的图像提供了广泛的定性和定量评估,以选择模型,并将其性能与CFD传递的模拟进行比较。然后,我们通过提出用于在不同架构上注入这种信息的一般框架,将位置数据添加到输入可以产生更准确的结果。此外,我们表明模型通过应用注意机制和光谱归一化来改善,以便于稳定训练。
translated by 谷歌翻译
本文介绍了一个新颖的神经网络 - 流程完成网络(FCN) - 以从基于图形卷积注意网络的不完整数据中推断出流体动力学,包括流场和作用于身体的力。 FCN由几个图卷积层和空间注意层组成。它旨在推断与涡流力图(VFM)方法结合使用时流场的速度场和涡流力的贡献。与流体动力学中采用的其他神经网络相比,FCN能够处理两个结构化数据和非结构化数据。拟议的FCN的性能通过圆柱周围流场的计算流体动力学(CFD)数据进行评估。我们的模型预测的力系数对直接从CFD获得的工具进行了估算。此外,结果表明,我们的模型同时使用存在的流场信息和梯度信息,比传统的基于基于的基于传统的神经网络(CNN)和深神经网络(DNN)模型更有性能。具体而言,在不同雷诺数数字和培训数据集的不同比例的所有第三酶中,结果表明,在测试数据集中,提议的FCN在测试数据集中达到了5.86%的最大规范均值误差,该误差远低于基于Thetradientional CNN的和TheTraDientional CNN的最大正方形误差基于DNN的模型(分别为42.32%和15.63%)。
translated by 谷歌翻译
A recent trend in deep learning research features the application of graph neural networks for mesh-based continuum mechanics simulations. Most of these frameworks operate on graphs in which each edge connects two nodes. Inspired by the data connectivity in the finite element method, we connect the nodes by elements rather than edges, effectively forming a hypergraph. We implement a message-passing network on such a node-element hypergraph and explore the capability of the network for the modeling of fluid flow. The network is tested on two common benchmark problems, namely the fluid flow around a circular cylinder and airfoil configurations. The results show that such a message-passing network defined on the node-element hypergraph is able to generate more stable and accurate temporal roll-out predictions compared to the baseline generalized message-passing network defined on a normal graph. Along with adjustments in activation function and training loss, we expect this work to set a new strong baseline for future explorations of mesh-based fluid simulations with graph neural networks.
translated by 谷歌翻译
物理世界中的液体的难以解释需要准确地模拟其许多科学和工程应用的动态。传统上,建立得很好但资源密集的CFD溶解器提供了这种模拟。近年来已经看到了深入学习的替代模型,取代了这些求解器来缓解模拟过程。构建数据驱动代理的一些方法模拟了求解器迭代过程。他们推断出前一个液体的下一个状态。其他人直接从时间输入中推断出来。方法在其对空间信息的管理方面也有所不同。图形神经网络(GNN)可以解决CFD仿真中常用的不规则网格的特异性。在本文中,我们展示了我们正在进行的工作来设计一种用于不规则网格的新型直接时间GNN架构。它包括随着样条卷绕卷积连接的尺寸的连续。我们在von k {\'a} rm {\'a} n的vortex街基准测试中测试我们的架构。它实现了小的泛化误差,同时减轻了轨迹的误差累积。
translated by 谷歌翻译
浅水方程是大多数洪水和河流液压分析模型的基础。这些基于物理的模型通常昂贵且速度慢,因此不适合实时预测或参数反转。有吸引力的替代方案是代理模型。这项工作基于深度学习介绍了高效,准确,灵活的代理模型,NN-P2P,它可以对非结构化或不规则网格进行点对点预测。评估新方法并与基于卷积神经网络(CNNS)的现有方法进行比较,其只能在结构化或常规网格上进行图像到图像预测。在NN-P2P中,输入包括空间坐标和边界特征,可以描述液压结构的几何形状,例如桥墩。所有代理模型都在预测培训域中不同类型的码头周围的流程中。然而,当执行空间推断时,只有NN-P2P工作很好。基于CNN的方法的限制源于其光栅图像性质,其无法捕获边界几何形状和流量,这对流体动力学至关重要。 NN-P2P在通过神经网络预测码头周围的流量方面也具有良好的性能。 NN-P2P模型还严格尊重保护法。通过计算拖动系数$ C_D $的拖动系数$ C_D $ C_D $与码头长度/宽度比的新线性关系来证明拟议的代理模型的应用。
translated by 谷歌翻译
深度学习替代模型已显示出在解决部分微分方程(PDE)方面的希望。其中,傅立叶神经操作员(FNO)达到了良好的准确性,并且与数值求解器(例如流体流量)上的数值求解器相比要快得多。但是,FNO使用快速傅立叶变换(FFT),该变换仅限于具有均匀网格的矩形域。在这项工作中,我们提出了一个新框架,即Geo-Fno,以解决任意几何形状的PDE。 Geo-FNO学会将可能不规则的输入(物理)结构域变形为具有均匀网格的潜在空间。具有FFT的FNO模型应用于潜在空间。所得的GEO-FNO模型既具有FFT的计算效率,也具有处理任意几何形状的灵活性。我们的Geo-FNO在其输入格式,,即点云,网格和设计参数方面也很灵活。我们考虑了各种PDE,例如弹性,可塑性,Euler和Navier-Stokes方程,以及正向建模和逆设计问题。与标准数值求解器相比,与标准数值求解器相比,Geo-fno的价格比标准数值求解器快两倍,与在现有基于ML的PDE求解器(如标准FNO)上进行直接插值相比,Geo-fno更准确。
translated by 谷歌翻译
数值模拟中信息丢失可能来自各种来源,同时求解离散的部分微分方程。特别地,与等效的64位模拟相比,使用低精确的16位浮点算术进行模拟时,与精度相关的错误可能会积累在关注量中。在这里,低精度计算所需的资源要比高精度计算要低得多。最近提出的几种机器学习(ML)技术已成功纠正空间离散化引起的错误。在这项工作中,我们扩展了这些技术,以改善使用低数值精度进行的计算流体动力学(CFD)模拟。我们首先量化了在Kolmogorov强制湍流测试案例中累积的精度相关误差。随后,我们采用了卷积神经网络以及执行16位算术的完全可区分的数值求解器,以学习紧密耦合的ML-CFD混合求解器。与16位求解器相比,我们证明了ML-CFD混合求解器在减少速度场中的误差积累并在较高频率下改善动能光谱的功效。
translated by 谷歌翻译
高维时空动力学通常可以在低维子空间中编码。用于建模,表征,设计和控制此类大规模系统的工程应用通常依赖于降低尺寸,以实时计算解决方案。降低维度的常见范例包括线性方法,例如奇异值分解(SVD)和非线性方法,例如卷积自动编码器(CAE)的变体。但是,这些编码技术缺乏有效地表示与时空数据相关的复杂性的能力,后者通常需要可变的几何形状,非均匀的网格分辨率,自适应网格化和/或参数依赖性。为了解决这些实用的工程挑战,我们提出了一个称为神经隐式流(NIF)的一般框架,该框架可以实现大型,参数,时空数据的网格不稳定,低级别表示。 NIF由两个修改的多层感知器(MLP)组成:(i)shapenet,它分离并代表空间复杂性,以及(ii)参数,该参数解释了任何其他输入复杂性,包括参数依赖关系,时间和传感器测量值。我们演示了NIF用于参数替代建模的实用性,从而实现了复杂时空动力学的可解释表示和压缩,有效的多空间质量任务以及改善了稀疏重建的通用性能。
translated by 谷歌翻译
机器人中的一个重要挑战是了解机器人与由粒状材料组成的可变形地形之间的相互作用。颗粒状流量及其与刚体的互动仍然造成了几个开放的问题。有希望的方向,用于准确,且有效的建模使用的是使用连续体方法。此外,实时物理建模的新方向是利用深度学习。该研究推进了用于对刚性体驱动颗粒流建模的机器学习方法,用于应用于地面工业机器以及空间机器人(重力的效果是一个重要因素的地方)。特别是,该研究考虑了子空间机器学习仿真方法的开发。要生成培训数据集,我们利用我们的高保真连续体方法,材料点法(MPM)。主要成分分析(PCA)用于降低数据的维度。我们表明我们的高维数据的前几个主要组成部分几乎保持了数据的整个方差。培训图形网络模拟器(GNS)以学习底层子空间动态。然后,学习的GNS能够以良好的准确度预测颗粒位置和交互力。更重要的是,PCA在训练和卷展栏中显着提高了GNS的时间和记忆效率。这使得GNS能够使用具有中等VRAM的单个桌面GPU进行培训。这也使GNS实时在大规模3D物理配置(比我们的连续方法快700倍)。
translated by 谷歌翻译