深度学习替代模型已显示出在解决部分微分方程(PDE)方面的希望。其中,傅立叶神经操作员(FNO)达到了良好的准确性,并且与数值求解器(例如流体流量)上的数值求解器相比要快得多。但是,FNO使用快速傅立叶变换(FFT),该变换仅限于具有均匀网格的矩形域。在这项工作中,我们提出了一个新框架,即Geo-Fno,以解决任意几何形状的PDE。 Geo-FNO学会将可能不规则的输入(物理)结构域变形为具有均匀网格的潜在空间。具有FFT的FNO模型应用于潜在空间。所得的GEO-FNO模型既具有FFT的计算效率,也具有处理任意几何形状的灵活性。我们的Geo-FNO在其输入格式,,即点云,网格和设计参数方面也很灵活。我们考虑了各种PDE,例如弹性,可塑性,Euler和Navier-Stokes方程,以及正向建模和逆设计问题。与标准数值求解器相比,与标准数值求解器相比,Geo-fno的价格比标准数值求解器快两倍,与在现有基于ML的PDE求解器(如标准FNO)上进行直接插值相比,Geo-fno更准确。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
傅里叶神经运营商(FNO)是一种基于学习的方法,用于有效地模拟部分微分方程。我们提出了分解的傅立叶神经运营商(F-FNO),允许与更深的网络更好地推广。通过仔细组合傅里叶分解,跨所有层,Markov属性和残差连接的共享内核积分运算符,F-FNOS在Navier-Stokes基准数据集的最动力设置上达到六倍的误差。我们表明我们的模型保持了2%的错误率,同时仍然比数值求解器更快地运行幅度,即使问题设置扩展到包括诸如粘度和时变力的附加上下文,也是如此。这使得与相同的预制神经网络能够模拟巨大不同的条件。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
机器学习方法最近在求解部分微分方程(PDE)中的承诺。它们可以分为两种广泛类别:近似解决方案功能并学习解决方案操作员。物理知识的神经网络(PINN)是前者的示例,而傅里叶神经操作员(FNO)是后者的示例。这两种方法都有缺点。 Pinn的优化是具有挑战性,易于发生故障,尤其是在多尺度动态系统上。 FNO不会遭受这种优化问题,因为它在给定的数据集上执行了监督学习,但获取此类数据可能太昂贵或无法使用。在这项工作中,我们提出了物理知识的神经运营商(Pino),在那里我们结合了操作学习和功能优化框架。这种综合方法可以提高PINN和FNO模型的收敛速度和准确性。在操作员学习阶段,Pino在参数PDE系列的多个实例上学习解决方案操作员。在测试时间优化阶段,Pino优化预先训练的操作员ANSATZ,用于PDE的查询实例。实验显示Pino优于许多流行的PDE家族的先前ML方法,同时保留与求解器相比FNO的非凡速度。特别是,Pino准确地解决了挑战的长时间瞬态流量,而其他基线ML方法无法收敛的Kolmogorov流程。
translated by 谷歌翻译
\ emph {几何深度学习}(GDL)的最新进展显示了其提供强大数据驱动模型的潜力。这提供了探索从图形数据中\ emph {部分微分方程}(PDES)控制的物理系统的新方法的动力。然而,尽管做出了努力和最近的成就,但几个研究方向仍未开发,进步仍然远非满足现实现象的身体要求。主要障碍之一是缺乏基准数据集和常见的物理评估协议。在本文中,我们提出了一个2-D Graph-Mesh数据集,以研究High Reynolds制度的机翼上的气流(从$ 10^6 $及以后)。我们还对翼型上的应力力引入指标,以评估重要的物理量的GDL模型。此外,我们提供广泛的GDL基准。
translated by 谷歌翻译
高维时空动力学通常可以在低维子空间中编码。用于建模,表征,设计和控制此类大规模系统的工程应用通常依赖于降低尺寸,以实时计算解决方案。降低维度的常见范例包括线性方法,例如奇异值分解(SVD)和非线性方法,例如卷积自动编码器(CAE)的变体。但是,这些编码技术缺乏有效地表示与时空数据相关的复杂性的能力,后者通常需要可变的几何形状,非均匀的网格分辨率,自适应网格化和/或参数依赖性。为了解决这些实用的工程挑战,我们提出了一个称为神经隐式流(NIF)的一般框架,该框架可以实现大型,参数,时空数据的网格不稳定,低级别表示。 NIF由两个修改的多层感知器(MLP)组成:(i)shapenet,它分离并代表空间复杂性,以及(ii)参数,该参数解释了任何其他输入复杂性,包括参数依赖关系,时间和传感器测量值。我们演示了NIF用于参数替代建模的实用性,从而实现了复杂时空动力学的可解释表示和压缩,有效的多空间质量任务以及改善了稀疏重建的通用性能。
translated by 谷歌翻译
Neural network-based approaches for solving partial differential equations (PDEs) have recently received special attention. However, the large majority of neural PDE solvers only apply to rectilinear domains, and do not systematically address the imposition of Dirichlet/Neumann boundary conditions over irregular domain boundaries. In this paper, we present a framework to neurally solve partial differential equations over domains with irregularly shaped (non-rectilinear) geometric boundaries. Our network takes in the shape of the domain as an input (represented using an unstructured point cloud, or any other parametric representation such as Non-Uniform Rational B-Splines) and is able to generalize to novel (unseen) irregular domains; the key technical ingredient to realizing this model is a novel approach for identifying the interior and exterior of the computational grid in a differentiable manner. We also perform a careful error analysis which reveals theoretical insights into several sources of error incurred in the model-building process. Finally, we showcase a wide variety of applications, along with favorable comparisons with ground truth solutions.
translated by 谷歌翻译
作为在受边界价值约束下的部分微分方程(PDE)的经典数值求解器的替代方案,人们对研究可以有效解决此类问题的神经网络引起了人们的兴趣。在这项工作中,我们使用图神经网络(GNN)和光谱图卷积为两个不同时间独立的PDE设计了一个通用解决方案操作员。我们从有限元求解器的模拟数据上训练网络,以了解各种形状和不均匀性。与以前的作品相反,我们专注于受过训练的操作员概括以前看不见的情况的能力。具体而言,我们测试对不同形状和解决方案叠加的网格的概括,以确保不同数量的不均匀性。我们发现,在有限元网格中有很大变化的不同数据集进行培训是在所有情况下都能实现良好概括结果的关键要素。因此,我们认为GNN可以用来学习在一系列属性上概括并生成的解决方案的解决方案运算符,并比通用求解器快得多。我们可以公开可用的数据集可以使用并扩展,以验证这些模型在不同条件下的鲁棒性。
translated by 谷歌翻译
我们制定了一类由物理驱动的深层变量模型(PDDLVM),以学习参数偏微分方程(PDES)的参数到解决方案(正向)和解决方案到参数(逆)图。我们的公式利用有限元方法(FEM),深神经网络和概率建模来组装一个深层概率框架,在该框架中,向前和逆图通过连贯的不确定性量化近似。我们的概率模型明确合并了基于参数PDE的密度和可训练的解决方案到参数网络,而引入的摊销变异家庭假定参数到解决方案网络,所有这些网络均经过联合培训。此外,所提出的方法不需要任何昂贵的PDE解决方案,并且仅在训练时间内对物理信息进行了信息,该方法允许PDE的实时仿真和培训后的逆问题解决方案的产生,绕开了对FEM操作的需求,以相当的准确性,以便于FEM解决方案。提出的框架进一步允许无缝集成观察到的数据,以解决反问题和构建生成模型。我们证明了方法对非线性泊松问题,具有复杂3D几何形状的弹性壳以及整合通用物理信息信息的神经网络(PINN)体系结构的有效性。与传统的FEM求解器相比,训练后,我们最多达到了三个数量级的速度,同时输出连贯的不确定性估计值。
translated by 谷歌翻译
事实证明,神经操作员是无限维函数空间之间非线性算子的强大近似值,在加速偏微分方程(PDE)的溶液方面是有希望的。但是,它需要大量的模拟数据,这些数据可能成本高昂,从而导致鸡肉 - 蛋的困境并限制其在求解PDE中的使用。为了摆脱困境,我们提出了一个无数据的范式,其中神经网络直接从由离散的PDE构成的平方平方残留(MSR)损失中学习物理。我们研究了MSR损失中的物理信息,并确定神经网络必须具有对PDE空间域中的远距离纠缠建模的挑战,PDE的空间域中的模式在不同的PDE中有所不同。因此,我们提出了低级分解网络(Lordnet),该网络可调节,并且也有效地建模各种纠缠。具体而言,Lordnet通过简单的完全连接的层学习了与全球纠缠的低级别近似值,从而以降低的计算成本来提取主要模式。关于解决泊松方程和纳维尔 - 长方式方程的实验表明,MSR损失的物理约束可以提高神经网络的精确度和泛化能力。此外,Lordnet在PDE中的其他现代神经网络体系结构都优于最少的参数和最快的推理速度。对于Navier-Stokes方程式,学习的运算符的速度比具有相同计算资源的有限差异解决方案快50倍。
translated by 谷歌翻译
物理世界中的液体的难以解释需要准确地模拟其许多科学和工程应用的动态。传统上,建立得很好但资源密集的CFD溶解器提供了这种模拟。近年来已经看到了深入学习的替代模型,取代了这些求解器来缓解模拟过程。构建数据驱动代理的一些方法模拟了求解器迭代过程。他们推断出前一个液体的下一个状态。其他人直接从时间输入中推断出来。方法在其对空间信息的管理方面也有所不同。图形神经网络(GNN)可以解决CFD仿真中常用的不规则网格的特异性。在本文中,我们展示了我们正在进行的工作来设计一种用于不规则网格的新型直接时间GNN架构。它包括随着样条卷绕卷积连接的尺寸的连续。我们在von k {\'a} rm {\'a} n的vortex街基准测试中测试我们的架构。它实现了小的泛化误差,同时减轻了轨迹的误差累积。
translated by 谷歌翻译
气候,化学或天体物理学中的数值模拟在计算上对于高分辨率下的不确定性定量或参数探索而言太昂贵。减少或替代模型的多个数量级更快,但是传统的替代物是僵化或不准确和纯机器学习(ML)基于基于数据的替代物。我们提出了一个混合,灵活的替代模型,该模型利用已知的物理学来模拟大规模动力学,并将学习到难以模拟的项,该术语称为参数化或闭合,并捕获了细界面对大型动力学的影响。利用神经操作员,我们是第一个学习独立于网格的,非本地和灵活的参数化的人。我们的\ textit {多尺度神经操作员}是由多尺度建模的丰富文献进行的,具有准线性运行时复杂性,比最先进的参数化更准确或更灵活,并且在混乱方程的多尺度lorenz96上证明。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
尽管在整个科学和工程中都无处不在,但只有少数部分微分方程(PDE)具有分析或封闭形式的解决方案。这激发了有关PDE的数值模拟的大量经典工作,最近,对数据驱动技术的研究旋转了机器学习(ML)。最近的一项工作表明,与机器学习的经典数值技术的混合体可以对任何一种方法提供重大改进。在这项工作中,我们表明,在纳入基于物理学的先验时,数值方案的选择至关重要。我们以基于傅立叶的光谱方法为基础,这些光谱方法比其他数值方案要高得多,以模拟使用平滑且周期性解决方案的PDE。具体而言,我们为流体动力学的三个模型PDE开发了ML增强的光谱求解器,从而提高了标准光谱求解器在相同分辨率下的准确性。我们还展示了一些关键设计原则,用于将机器学习和用于解决PDE的数值方法结合使用。
translated by 谷歌翻译
动力系统的演变通常由非线性偏微分方程(PDE)控制,在模拟框架中,其解决方案需要大量的计算资源。在这项工作中,我们提出了一种新颖的方法,该方法将超网络求解器与傅立叶神经操作员体系结构相结合。我们的方法分别处理时间和空间。结果,它通过采用部分差分运算符的一般组成特性,成功地在连续时间步骤中成功传播了初始条件。在先前的工作之后,在特定时间点提供监督。我们在各个时间演化PDE上测试我们的方法,包括一个,两个和三个空间维度中的非线性流体流。结果表明,新方法在监督点的时间点提高了学习准确性,并能够插入和解决任何中间时间的解决方案。
translated by 谷歌翻译
Solving partial differential equations is difficult. Recently proposed neural resolution-invariant models, despite their effectiveness and efficiency, usually require equispaced spatial points of data. However, sampling in spatial domain is sometimes inevitably non-equispaced in real-world systems, limiting their applicability. In this paper, we propose a Non-equispaced Fourier PDE Solver (\textsc{NFS}) with adaptive interpolation on resampled equispaced points and a variant of Fourier Neural Operators as its components. Experimental results on complex PDEs demonstrate its advantages in accuracy and efficiency. Compared with the spatially-equispaced benchmark methods, it achieves superior performance with $42.85\%$ improvements on MAE, and is able to handle non-equispaced data with a tiny loss of accuracy. Besides, to our best knowledge, \textsc{NFS} is the first ML-based method with mesh invariant inference ability to successfully model turbulent flows in non-equispaced scenarios, with a minor deviation of the error on unseen spatial points.
translated by 谷歌翻译
本构模型广泛用于在科学与工程中建模复杂系统,其中基于第一原则,解决良好的模拟通常是非常昂贵的。例如,在流体动力学中,需要构成型型号来描述非局部,未解决的物理学,例如湍流和层状湍流转变。然而,基于部分微分方程(PDE)的传统本构模型通常缺乏稳健性,并且太硬而无法容纳不同的校准数据集。我们提出了一种基于可以使用数据学习的矢量云神经网络的帧无关的非局部构成模型。该模型在基于其邻域中的流量信息的点处预测闭合变量。这种非本种信息由一组点表示,每个点具有附加到它的特征向量,因此输入被称为矢量云。云通过帧无关的神经网络映射到封闭变量,不变于协调转换和旋转以及云中点的排序。这样,网络可以处理任何数量的任意排列的网格点,因此适用于流体模拟中的非结构化网格。所提出的网络的优点是在参数化的周期山几何形状上的标量传输PDE上进行了说明。矢量云神经网络是一个有前途的工具,不仅是非本体构成型模型,而且还是作为不规则结构域的PDE的一般代理模型。
translated by 谷歌翻译
众所周知,混乱的系统对预测的挑战是挑战,因为它们对时间的敏感性和由于阶梯时间而引起的错误和错误。尽管这种不可预测的行为,但对于许多耗散系统,长期轨迹的统计数据仍受到一套被称为全球吸引子的不变措施的管辖。对于许多问题,即使状态空间是无限的维度,该集合是有限维度的。对于马尔可夫系统,长期轨迹的统计特性由解决方案操作员唯一确定,该解决方案操作员将系统的演变映射到任意正时间增量上。在这项工作中,我们提出了一个机器学习框架,以学习耗散混沌系统的基础解决方案操作员,这表明所得的学习操作员准确地捕获了短期轨迹和长期统计行为。使用此框架,我们能够预测湍流Kolmogorov流动动力学的各种统计数据,雷诺数为5000。
translated by 谷歌翻译