深层神经网络目前为显微镜图像细胞分割提供了令人鼓舞的结果,但是它们需要大规模标记的数据库,这是一个昂贵且耗时的过程。在这项工作中,我们通过将自我监督与半监督的学习相结合来放松标签要求。我们提出了基于边缘的地图的预测,以自我监督未标记的图像的训练,该图像与少数标记的图像的监督培训相结合,用于学习分割任务。在我们的实验中,我们在几次显微镜图像细胞分割基准上进行了评估,并表明只有少数注释的图像,例如原始训练集的10%足以让我们的方法与1到10次的完全注释的数据库达到类似的性能。我们的代码和训练有素的模型公开可用
translated by 谷歌翻译
监管基于深度学习的方法,产生医学图像分割的准确结果。但是,它们需要大量标记的数据集,并获得它们是一种艰苦的任务,需要临床专业知识。基于半/自我监督的学习方法通​​过利用未标记的数据以及有限的注释数据来解决此限制。最近的自我监督学习方法使用对比损失来从未标记的图像中学习良好的全球层面表示,并在像想象网那样的流行自然图像数据集上实现高性能。在诸如分段的像素级预测任务中,对于学习良好的本地级别表示以及全局表示来说至关重要,以实现更好的准确性。然而,现有的局部对比损失的方法的影响仍然是学习良好本地表现的限制,因为类似于随机增强和空间接近定义了类似和不同的局部区域;由于半/自我监督设置缺乏大规模专家注释,而不是基于当地地区的语义标签。在本文中,我们提出了局部对比损失,以便通过利用从未标记的图像的未标记图像的伪标签获得的语义标签信息来学习用于分割的良好像素级别特征。特别地,我们定义了建议的损失,以鼓励具有相同伪标签/标签的像素的类似表示,同时与数据集中的不同伪标签/标签的像素的表示。我们通过联合优化标记和未标记的集合和仅限于标记集的分割损失,通过联合优化拟议的对比损失来进行基于伪标签的自培训和培训网络。我们在三个公共心脏和前列腺数据集上进行了评估,并获得高分割性能。
translated by 谷歌翻译
本文涉及分割中的伪标记。我们的贡献是四倍。首先,我们提出了伪标签的新表述,作为一种预期最大化(EM)算法,用于清晰的统计解释。其次,我们纯粹基于原始伪标记,即Segpl,提出了一种半监督的医学图像分割方法。我们证明,SEGPL是针对针对2D多级MRI MRI脑肿瘤分段任务和3D二进制CT肺部肺血管分段任务的半监督分割的最新一致性正则方法的竞争方法。与先前方法相比,SEGPL的简单性允许更少的计算成本。第三,我们证明了SEGPL的有效性可能源于其稳健性抵抗分布噪声和对抗性攻击。最后,在EM框架下,我们通过变异推理引入了SEGPL的概率概括,该推论学习了训练期间伪标记的动态阈值。我们表明,具有变异推理的SEGPL可以通过金标准方法深度集合在同步时执行不确定性估计。
translated by 谷歌翻译
This work tackles the problem of semi-supervised learning of image classifiers. Our main insight is that the field of semi-supervised learning can benefit from the quickly advancing field of self-supervised visual representation learning. Unifying these two approaches, we propose the framework of self-supervised semi-supervised learning (S 4 L) and use it to derive two novel semi-supervised image classification methods. We demonstrate the effectiveness of these methods in comparison to both carefully tuned baselines, and existing semi-supervised learning methods. We then show that S 4 L and existing semi-supervised methods can be jointly trained, yielding a new state-of-the-art result on semi-supervised ILSVRC-2012 with 10% of labels.
translated by 谷歌翻译
深度学习模型的培训通常需要大量的注释数据,以实现有效的收敛和泛化。然而,获得高质量的注释是一种借鉴和昂贵的过程,因为需要专家放射科学家进行标签任务。在医学图像分析中的半监督学习的研究是至关重要的,因为获得未标记的图像的昂贵比以获得专家放射科医师标记的图像更便宜。基本上,半监督方法利用大量未标记的数据来实现比仅使用小组标记图像更好的训练收敛和泛化。在本文中,我们提出了自我监督的平均教师进行半监督(S $ ^ 2 $ MTS $ ^ 2 $)学习,将自我监督的卑鄙教师预训练与半监督微调相结合。 S $ ^ 2 $ MTS $ ^ 2 $的主要创新是基于联合对比学习的自我监督的平均教师预培训,它使用无限数量的正查询和关键特征来改善平均值 - 老师代表。然后使用具有半监督学习的指数移动平均教师框架进行微调。我们从胸部X-ray14和Chexpert的多标签分类问题上验证了S $ ^ 2 $ MTS $ ^ 2 $,以及iC2018的多级分类,在那里我们表明它优于前一个SOTA半监督的学习方法通过大幅度。
translated by 谷歌翻译
我们对最近的自我和半监督ML技术进行严格的评估,从而利用未标记的数据来改善下游任务绩效,以河床分割的三个遥感任务,陆地覆盖映射和洪水映射。这些方法对于遥感任务特别有价值,因为易于访问未标记的图像,并获得地面真理标签通常可以昂贵。当未标记的图像(标记数据集之外)提供培训时,我们量化性能改进可以对这些遥感分割任务进行期望。我们还设计实验以测试这些技术的有效性,当测试集相对于训练和验证集具有域移位时。
translated by 谷歌翻译
在培训深层网络中进行部分分割的重要瓶颈是获得详细注释的成本。我们提出了一个框架,以利用粗糙标签,例如图形地面蒙版和关键点位置,这些位置容易用于某些类别以改善零件分割模型。一个关键的挑战是,这些注释是针对不同任务和不同的标签样式收集的,并且不能轻易地映射到零件标签上。为此,我们建议共同学习标签样式与部分分割模型之间的依赖关系,从而使我们能够利用来自不同标签的监督。为了评估我们的方法,我们在Caltech-UCSD鸟类和OID飞机数据集上开发了基准。我们的方法优于基于多任务学习,半监督学习和竞争方法的基准,这些方法依赖于手动设计的损失功能,以利用稀疏的supervision。
translated by 谷歌翻译
A key requirement for the success of supervised deep learning is a large labeled dataset -a condition that is difficult to meet in medical image analysis. Selfsupervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark. The code is made public at https://github.com/krishnabits001/domain_specific_cl. 34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
在材料科学领域,显微镜是结构表征的第一个且通常仅可访问的方法。对可以自动化显微镜图像的分析和解释的机器学习方法的开发越来越感兴趣。通常,对机器学习模型进行培训需要大量具有相关结构标签的图像,但是,手动标记图像需要域知识,并且容易受到人为错误和主观性的影响。为了克服这些局限性,我们提出了一种半监督的转移学习方法,该方法使用少数标记的显微镜图像进行训练,并像在明显更大的图像数据集中训练的方法一样有效地执行。具体而言,我们使用自我监督的学习方法训练图像编码器,并使用编码器来传输不同下游图像任务(分类和细分),并使用最少数量的标记图像进行培训来传输该编码器。我们测试了两种自我监督学习方法的转移学习能力:传输电子显微镜(TEM)图像的SIMCLR和Barlow-Twins。我们详细说明了该机器学习工作流程如何应用于蛋白质纳米线的TEM图像如何实现纳米线形态的自动分类(例如,单纳米线,纳米线,纳米线捆绑包,相位分离)以及可以用作量化纳米域域的基础的分段任务和形状分析。我们还将机器学习工作流程的应用扩展到纳米颗粒形态的分类以及从TEM图像中鉴定不同类型病毒的分类。
translated by 谷歌翻译
卷积神经网络(CNN)已经实现了医学图像细分的最先进性能,但需要大量的手动注释进行培训。半监督学习(SSL)方法有望减少注释的要求,但是当数据集大小和注释图像的数量较小时,它们的性能仍然受到限制。利用具有类似解剖结构的现有注释数据集来协助培训,这有可能改善模型的性能。然而,由于目标结构的外观不同甚至成像方式,跨解剖结构域的转移进一步挑战。为了解决这个问题,我们提出了跨解剖结构域适应(CS-CADA)的对比度半监督学习,该学习适应一个模型以在目标结构域中细分相似的结构,这仅需要通过利用一组现有现有的现有的目标域中的限制注释源域中相似结构的注释图像。我们使用特定领域的批归归量表(DSBN)来单独地标准化两个解剖域的特征图,并提出跨域对比度学习策略,以鼓励提取域不变特征。它们被整合到一个自我兼容的均值老师(SE-MT)框架中,以利用具有预测一致性约束的未标记的目标域图像。广泛的实验表明,我们的CS-CADA能够解决具有挑战性的跨解剖结构域移位问题,从而在视网膜血管图像和心脏MR图像的帮助下,在X射线图像中准确分割冠状动脉,并借助底底图像,分别仅给定目标域中的少量注释。
translated by 谷歌翻译
Well-annotated medical datasets enable deep neural networks (DNNs) to gain strong power in extracting lesion-related features. Building such large and well-designed medical datasets is costly due to the need for high-level expertise. Model pre-training based on ImageNet is a common practice to gain better generalization when the data amount is limited. However, it suffers from the domain gap between natural and medical images. In this work, we pre-train DNNs on ultrasound (US) domains instead of ImageNet to reduce the domain gap in medical US applications. To learn US image representations based on unlabeled US videos, we propose a novel meta-learning-based contrastive learning method, namely Meta Ultrasound Contrastive Learning (Meta-USCL). To tackle the key challenge of obtaining semantically consistent sample pairs for contrastive learning, we present a positive pair generation module along with an automatic sample weighting module based on meta-learning. Experimental results on multiple computer-aided diagnosis (CAD) problems, including pneumonia detection, breast cancer classification, and breast tumor segmentation, show that the proposed self-supervised method reaches state-of-the-art (SOTA). The codes are available at https://github.com/Schuture/Meta-USCL.
translated by 谷歌翻译
Automated cellular instance segmentation is a process utilized for accelerating biological research for the past two decades, and recent advancements have produced higher quality results with less effort from the biologist. Most current endeavors focus on completely cutting the researcher out of the picture by generating highly generalized models. However, these models invariably fail when faced with novel data, distributed differently than the ones used for training. Rather than approaching the problem with methods that presume the availability of large amounts of target data and computing power for retraining, in this work we address the even greater challenge of designing an approach that requires minimal amounts of new annotated data as well as training time. We do so by designing specialized contrastive losses that leverage the few annotated samples very efficiently. A large set of results show that 3 to 5 annotations lead to models with accuracy that: 1) significantly mitigate the covariate shift effects; 2) matches or surpasses other adaptation methods; 3) even approaches methods that have been fully retrained on the target distribution. The adaptation training is only a few minutes, paving a path towards a balance between model performance, computing requirements and expert-level annotation needs.
translated by 谷歌翻译
必须在密集的注释图像上培训最先进的实例分段方法。虽然一般而言,这一要求对于生物医学图像尤其令人生畏,其中域专业知识通常需要注释,没有大的公共数据收集可用于预培训。我们建议通过基于非空间嵌入的非空间嵌入的联盟分割方法来解决密集的注释瓶颈,该方法利用所学习的嵌入空间的结构以可分散的方式提取单个实例。然后可以将分割损耗直接应用于实例,整体管道可以以完全或弱监督的方式培训,包括积极解贴的监管的具有挑战性的情况,其中为未标记的部分引入了一种新的自我监督的一致性损失训练数据。我们在不同显微镜模型以及城市景观和CVPPP实例分段基准中评估了对2D和3D分段问题的提出的方法,在后者上实现最先进的结果。该代码可用于:https://github.com/kreshuklab/spoco
translated by 谷歌翻译
慢性伤口显着影响生活质量。如果没有正确管理,他们可能会严重恶化。基于图像的伤口分析可以通过量化与愈合相关的重要特征来客观地评估伤口状态。然而,伤口类型,图像背景组成和捕获条件的高异质性挑战伤口图像的鲁棒分割。我们呈现了检测和段(DS),深度学习方法,以产生具有高泛化能力的伤口分割图。在我们的方法中,专门的深度神经网络检测到伤口位置,从未经信息背景隔离伤口,并计算伤口分割图。我们使用具有糖尿病脚溃疡图像的一个数据集评估了这种方法。为了进一步测试,使用4个补充独立数据组,具有来自不同体积的较大种类的伤口类型。当以相同的方法组合检测和分割时,在将完整图像上的分割到0.85时,Matthews的相关系数(MCC)从0.29提高到0.29。当从补充数据集汲取的卷绕图像上进行测试时,DS方法将平均MCC从0.17增加到0.85。此外,DS方法使得分段模型的培训能够在保持分割性能的同时培训高达90%的训练数据。
translated by 谷歌翻译
在本文中,我们针对零射肿瘤分割的自我监督代表学习。我们提出以下贡献:首先,我们主张零拍摄设置,其中预培训的模型应该直接适用于下游任务,而无需使用任何手动注释。其次,我们从“层分解”中获取灵感,并创新了模拟肿瘤数据的培训制度。第三,我们进行广泛的消融研究,以分析数据模拟中的关键组成部分,并验证不同代理任务的必要性。我们证明,在模拟中具有足够的质地随机化,培训的模型可以毫不费力地推广到分段实际肿瘤数据。第四,我们的方法在不同下游数据集上实现了零射肿瘤分割的优异成果,对于脑肿瘤细分和LITS2017进行肝脏肿瘤分割。在评估低注释制度下评估肿瘤细分的模型可转移性,拟议方法也优于所有现有的自我监督方法,在实际情况下开辟了自我监督学习的使用。
translated by 谷歌翻译
我们建议在2D域中利用自我监督的技术来实现细粒度的3D形状分割任务。这是受到观察的启发:基于视图的表面表示比基于点云或体素占用率的3D对应物更有效地建模高分辨率表面细节和纹理。具体而言,给定3D形状,我们将其从多个视图中渲染,并在对比度学习框架内建立密集的对应学习任务。结果,与仅在2D或3D中使用自学的替代方案相比,学到的2D表示是视图不变和几何一致的,在对有限的标记形状进行培训时,可以更好地概括概括。对纹理(渲染peple)和未纹理(partnet)3D数据集的实验表明,我们的方法在细粒部分分割中优于最先进的替代方案。当仅一组稀疏的视图可供训练或形状纹理时,对基准的改进就会更大,这表明MVDecor受益于2D处理和3D几何推理。
translated by 谷歌翻译
在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
对大脑的电子显微镜(EM)体积的精确分割对于表征细胞或细胞器水平的神经元结构至关重要。尽管有监督的深度学习方法在过去几年中导致了该方向的重大突破,但它们通常需要大量的带注释的数据才能接受培训,并且在类似的实验和成像条件下获得的其他数据上的表现不佳。这是一个称为域适应的问题,因为从样本分布(或源域)中学到的模型难以维持其对从不同分布或目标域提取的样品的性能。在这项工作中,我们解决了基于深度学习的域适应性的复杂案例,以跨不同组织和物种的EM数据集进行线粒体分割。我们提出了三种无监督的域适应策略,以根据(1)两个域之间的最新样式转移来改善目标域中的线粒体分割; (2)使用未标记的源和目标图像预先培训模型的自我监督学习,然后仅用源标签进行微调; (3)具有标记和未标记图像的端到端训练的多任务神经网络体系结构。此外,我们提出了基于在源域中仅获得的形态学先验的新训练停止标准。我们使用三个公开可用的EM数据集进行了所有可能的跨数据库实验。我们评估了目标数据集预测的线粒体语义标签的拟议策略。此处介绍的方法优于基线方法,并与最新的状态相比。在没有验证标签的情况下,监视我们提出的基于形态的度量是停止训练过程并在平均最佳模型中选择的直观有效的方法。
translated by 谷歌翻译
学习无标记数据的判别性表示是一项具有挑战性的任务。对比性的自我监督学习提供了一个框架,可以使用简单的借口任务中的相似性措施来学习有意义的表示。在这项工作中,我们为使用图像贴片上的对比度学习而无需使用明确的借口任务或任何进一步标记的微调来提出一个简单有效的框架,用于使用对比度学习进行自我监督的图像分割。完全卷积的神经网络(FCNN)以自我监督的方式进行训练,以辨别输入图像中的特征并获得置信图,从而捕获网络对同一类的对象的信念。根据对比度学习的置信图中的平均熵对正 - 和负斑进行采样。当正面斑块之间的信息分离很小时,假定会收敛,而正阴对对很大。我们评估了从多个组织病理学数据集分割核的任务,并通过相关的自我监督和监督方法显示出可比的性能。所提出的模型仅由一个具有10.8K参数的简单FCNN组成,需要大约5分钟才能收敛于高分辨率显微镜数据集,该数据集比相关的自我监督方法小的数量级以获得相似的性能。
translated by 谷歌翻译
尽管使用深度学习技术从2D ENA中提取血管结构的研究越来越多,但对于这种方法,众所周知,曲线式结构上的数据注释过程(如视网膜脉管系统)非常昂贵且耗时,耗时,耗时,尽管很少有人试图解决注释问题。在这项工作中,我们提出了涂鸦基本弱监督学习方法的应用来自动化像素级注释。所提出的方法称为八度,使用涂鸦的地面真理与对抗性和新颖的自我监督深度监督相结合。我们的新型机制旨在利用来自类似于Unet的结构的歧视层的判别输出,在训练过程中,骨料判别输出和分割图谓词之间的kullback-liebler差异在训练过程中被最小化。如我们的实验所示,这种组合方法导致血管结构的定位更好。我们在大型公共数据集上验证了我们提出的方法,即Rose,Octa-500。将分割性能与最新的完全监督和基于涂鸦的弱监督方法进行了比较。实验中使用的工作的实施位于[链接]。
translated by 谷歌翻译