在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
医学图像分割是许多临床方法的基本和关键步骤。半监督学习已被广​​泛应用于医学图像分割任务,因为它减轻了收购专家审查的注释的沉重负担,并利用了更容易获得的未标记数据的优势。虽然已被证明是通过实施不同分布下的预测的不变性的一致性学习,但现有方法无法充分利用来自未标记数据的区域级形状约束和边界级距离信息。在本文中,我们提出了一种新颖的不确定性引导的相互一致学习框架,通过将任务中的一致性学习与自组合和交叉任务一致性学习从任务级正则化的最新预测集成了任务内的一致性学习,从而有效地利用了未标记的数据利用几何形状信息。该框架是由模型的估计分割不确定性指导,以便为一致性学习选择相对某些预测,以便有效地利用来自未标记数据的更可靠的信息。我们在两个公开的基准数据集中广泛地验证了我们提出的方法:左心房分割(LA)数据集和大脑肿瘤分割(BRATS)数据集。实验结果表明,我们的方法通过利用未标记的数据和优于现有的半监督分段方法来实现性能增益。
translated by 谷歌翻译
在本文中,我们提出了一个新型的相互一致性网络(MC-NET+),以有效利用未标记的数据进行半监督的医学图像分割。 MC-NET+模型的动机是通过观察到的,即经过有限注释训练的深模型很容易输出不确定的,易于分类的预测,例如模棱两可的区域(例如,粘合边缘或薄分支)进行医学图像分割。利用这些具有挑战性的样品可以使半监督分割模型训练更有效。因此,我们提出的MC-NET+模型由两个新设计组成。首先,该模型包含一个共享的编码器和多个略有不同的解码器(即使用不同的上采样策略)。计算多个解码器输出的统计差异以表示模型的不确定性,这表明未标记的硬区域。其次,我们在一个解码器的概率输出和其他解码器的软伪标签之间应用了一种新颖的相互一致性约束。通过这种方式,我们最大程度地减少了训练过程中多个输出(即模型不确定性)的差异,并迫使模型在此类具有挑战性的区域中产生不变的结果,旨在使模型训练正规化。我们将MC-NET+模型的细分结果与三个公共医疗数据集中的五种最先进的半监督方法进行了比较。具有两个标准半监督设置的扩展实验证明了我们模型的优越性能,而不是其他方法,这为半监督医学图像分割设定了新的最新技术。我们的代码将在https://github.com/ycwu1997/mc-net上公开发布。
translated by 谷歌翻译
半监督学习在医疗领域取得了重大进展,因为它减轻了收集丰富的像素的沉重负担,用于针对语义分割任务。现有的半监督方法增强了利用从有限标记数据获得的现有知识从未标记数据提取功能的能力。然而,由于标记数据的稀缺性,模型提取的特征在监督学习中受到限制,并且对未标记数据的预测质量也无法保证。两者都将妨碍一致培训。为此,我们提出了一种新颖的不确定性感知计划,以使模型自动学习地区。具体而言,我们采用Monte Carlo采样作为获得不确定性地图的估计方法,该方法可以作为损失损失的重量,以强制根据监督学习和无监督学习的特征将模型专注于有价值的区域。同时,在后退过程中,我们通过增强不同任务之间的梯度流动,联合无监督和监督损失来加速网络的融合。定量地,我们对三个挑战的医疗数据集进行了广泛的实验。实验结果表明,最先进的对应物的理想改善。
translated by 谷歌翻译
Training deep convolutional neural networks usually requires a large amount of labeled data. However, it is expensive and timeconsuming to annotate data for medical image segmentation tasks. In this paper, we present a novel uncertainty-aware semi-supervised framework for left atrium segmentation from 3D MR images. Our framework can effectively leverage the unlabeled data by encouraging consistent predictions of the same input under different perturbations. Concretely, the framework consists of a student model and a teacher model, and the student model learns from the teacher model by minimizing a segmentation loss and a consistency loss with respect to the targets of the teacher model. We design a novel uncertainty-aware scheme to enable the student model to gradually learn from the meaningful and reliable targets by exploiting the uncertainty information. Experiments show that our method achieves high performance gains by incorporating the unlabeled data. Our method outperforms the state-of-the-art semi-supervised methods, demonstrating the potential of our framework for the challenging semi-supervised problems 3 .
translated by 谷歌翻译
本文为半监督医学图像分割提供了一个简单而有效的两阶段框架。我们的主要洞察力是探索用标记和未标记的(即伪标记)图像的特征表示学习,以增强分段性能。在第一阶段,我们介绍了一种炼层的不确定感知方法,即Aua,以改善产生高质量伪标签的分割性能。考虑到医学图像的固有歧义,Aua自适应地规范了具有低歧义的图像的一致性。为了提高代表学习,我们提出了一种舞台适应性的对比学习方法,包括边界意识的对比损失,以规范第一阶段中标记的图像,并在第二阶段中的原型感知对比损失优化标记和伪标记的图像阶段。边界意识的对比损失仅优化分段边界周围的像素,以降低计算成本。原型感知对比损失通过为每个类构建质心来充分利用标记的图像和伪标记的图像,以减少对比较的计算成本。我们的方法在两个公共医学图像分割基准上实现了最佳结果。值得注意的是,我们的方法在结肠肿瘤分割的骰子上以5.7%的骰子依赖于只有5%标记的图像而表现出5.7%。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
基于深度学习的半监督学习(SSL)方法在医学图像细分中实现了强大的性能,可以通过使用大量未标记的数据来减轻医生昂贵的注释。与大多数现有的半监督学习方法不同,基于对抗性训练的方法通过学习分割图的数据分布来区分样本与不同来源,导致细分器生成更准确的预测。我们认为,此类方法的当前绩效限制是特征提取和学习偏好的问题。在本文中,我们提出了一种新的半监督的对抗方法,称为贴片置信疗法训练(PCA),用于医疗图像分割。我们提出的歧视器不是单个标量分类结果或像素级置信度图,而是创建贴片置信图,并根据斑块的规模进行分类。未标记数据的预测学习了每个贴片中的像素结构和上下文信息,以获得足够的梯度反馈,这有助于歧视器以融合到最佳状态,并改善半监督的分段性能。此外,在歧视者的输入中,我们补充了图像上的语义信息约束,使得未标记的数据更简单,以适合预期的数据分布。关于自动心脏诊断挑战(ACDC)2017数据集和脑肿瘤分割(BRATS)2019挑战数据集的广泛实验表明,我们的方法优于最先进的半监督方法,这证明了其对医疗图像分割的有效性。
translated by 谷歌翻译
监管基于深度学习的方法,产生医学图像分割的准确结果。但是,它们需要大量标记的数据集,并获得它们是一种艰苦的任务,需要临床专业知识。基于半/自我监督的学习方法通​​过利用未标记的数据以及有限的注释数据来解决此限制。最近的自我监督学习方法使用对比损失来从未标记的图像中学习良好的全球层面表示,并在像想象网那样的流行自然图像数据集上实现高性能。在诸如分段的像素级预测任务中,对于学习良好的本地级别表示以及全局表示来说至关重要,以实现更好的准确性。然而,现有的局部对比损失的方法的影响仍然是学习良好本地表现的限制,因为类似于随机增强和空间接近定义了类似和不同的局部区域;由于半/自我监督设置缺乏大规模专家注释,而不是基于当地地区的语义标签。在本文中,我们提出了局部对比损失,以便通过利用从未标记的图像的未标记图像的伪标签获得的语义标签信息来学习用于分割的良好像素级别特征。特别地,我们定义了建议的损失,以鼓励具有相同伪标签/标签的像素的类似表示,同时与数据集中的不同伪标签/标签的像素的表示。我们通过联合优化标记和未标记的集合和仅限于标记集的分割损失,通过联合优化拟议的对比损失来进行基于伪标签的自培训和培训网络。我们在三个公共心脏和前列腺数据集上进行了评估,并获得高分割性能。
translated by 谷歌翻译
While deep learning methods hitherto have achieved considerable success in medical image segmentation, they are still hampered by two limitations: (i) reliance on large-scale well-labeled datasets, which are difficult to curate due to the expert-driven and time-consuming nature of pixel-level annotations in clinical practices, and (ii) failure to generalize from one domain to another, especially when the target domain is a different modality with severe domain shifts. Recent unsupervised domain adaptation~(UDA) techniques leverage abundant labeled source data together with unlabeled target data to reduce the domain gap, but these methods degrade significantly with limited source annotations. In this study, we address this underexplored UDA problem, investigating a challenging but valuable realistic scenario, where the source domain not only exhibits domain shift~w.r.t. the target domain but also suffers from label scarcity. In this regard, we propose a novel and generic framework called ``Label-Efficient Unsupervised Domain Adaptation"~(LE-UDA). In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA. To assess the effectiveness of our method, we conduct extensive experiments on two different tasks for cross-modality segmentation between MRI and CT images. Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature. Code is available at: https://github.com/jacobzhaoziyuan/LE-UDA.
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
最近,已经提出了几种半监督医学图像分割的贝叶斯深度学习方法。尽管他们在医疗基准方面取得了令人鼓舞的结果,但仍然存在一些问题。首先,他们的整体体系结构属于判别模型,因此,在培训的早期阶段,它们仅使用标记的数据进行培训,这可能会使它们过于贴合标记的数据。其次,实际上,它们仅部分基于贝叶斯深度学习,因为它们的整体体系结构不是在贝叶斯框架下设计的。但是,统一贝叶斯观点下的整体体系结构可以使体系结构具有严格的理论依据,因此体系结构的每个部分都可以具有明确的概率解释。因此,为了解决问题,我们提出了一种新的生成贝叶斯深度学习(GBDL)体系结构。 GBDL属于生成模型,其目标是估计输入医疗量及其相应标签的联合分布。估计联合分布隐式涉及数据的分布,因此在培训的早期阶段都可以使用标记和未标记的数据,从而减轻潜在的过度拟合问题。此外,GBDL是在贝叶斯框架下完全设计的,因此我们提供了其完整的贝叶斯配方,这为我们的建筑奠定了理论上的概率基础。广泛的实验表明,我们的GBDL在三个公共医疗数据集上的四个常用评估指标方面优于先前的最新方法。
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
最近,利用卷积神经网络(CNNS)和变压器的深度学习表明,令人鼓舞的医学图像细分导致结果。但是,他们仍然具有挑战性,以实现有限的培训的良好表现。在这项工作中,我们通过在CNN和变压器之间引入交叉教学,为半监控医学图像分割提供了一个非常简单但有效的框架。具体而言,我们简化了从一致性正则化的经典深度共同训练交叉教学,其中网络的预测用作伪标签,直接端到端监督其他网络。考虑到CNN和变压器之间的学习范例的差异,我们在CNN和变压器之间引入了交叉教学,而不是使用CNNS。在公共基准测试中的实验表明,我们的方法优于八个现有的半监督学习方法,只需更简单的框架。值得注意的是,这项工作可能是第一次尝试将CNN和变压器组合以进行半监督的医学图像分割,并在公共基准上实现有前途的结果。该代码将发布:https://github.com/hilab-git/sl4mis。
translated by 谷歌翻译
整个腹部器官分割起着腹部损伤诊断,放射治疗计划的重要作用,并随访。然而,划定肿瘤学家所有腹部器官手工费时且非常昂贵的。近日,深学习型医学图像分割显示,以减少人工划定努力的潜力,但它仍然需要培训的大型精细注释的数据集。虽然在这个任务很多努力,但仍然覆盖整个腹部区域与整个腹腔脏器分割准确和详细的注解几个大的图像数据集。在这项工作中,我们建立了一个大型的\ textit【W】孔腹部\ textit {} OR甘斯\ textit {d} ataset(\ {textit WORD})的算法研究和临床应用的发展。此数据集包含150个腹部CT体积(30495片),并且每个卷具有16个机关用细像素级注释和涂鸦基于稀疏注释,这可能是与整个腹部器官注释最大数据集。状态的最先进的几个分割方法是在该数据集进行评估。而且,我们还邀请了临床肿瘤学家修改模型预测测量深度学习方法和真实的肿瘤学家之间的差距。我们进一步介绍和评价这一数据集一个新的基于涂鸦,弱监督分割。该工作腹部多器官分割任务提供了新的基准,这些实验可以作为基准对未来的研究和临床应用的发展。 https://github.com/HiLab-git/WORD:代码库和数据集将被释放
translated by 谷歌翻译
神经网络在医疗图像分割任务上的成功通常依赖于大型标记的数据集用于模型培训。但是,由于数据共享和隐私问题,获取和手动标记大型医疗图像集是资源密集的,昂贵的,有时是不切实际的。为了应对这一挑战,我们提出了一个通用的对抗数据增强框架Advchain,旨在提高培训数据对医疗图像分割任务的多样性和有效性。 AdvChain通过动态数据增强来增强数据,从而产生随机链接的光线像和几何转换,以类似于现实而又具有挑战性的成像变化以扩展训练数据。通过在培训期间共同优化数据增强模型和分割网络,可以生成具有挑战性的示例,以增强下游任务的网络可推广性。所提出的对抗数据增强不依赖生成网络,可以用作通用分割网络中的插件模块。它在计算上是有效的,适用于低声监督和半监督学习。我们在两个MR图像分割任务上分析和评估该方法:心脏分割和前列腺分割具有有限的标记数据。结果表明,所提出的方法可以减轻对标记数据的需求,同时提高模型泛化能力,表明其在医学成像应用中的实际价值。
translated by 谷歌翻译
We propose a novel teacher-student model for semi-supervised multi-organ segmentation. In teacher-student model, data augmentation is usually adopted on unlabeled data to regularize the consistent training between teacher and student. We start from a key perspective that fixed relative locations and variable sizes of different organs can provide distribution information where a multi-organ CT scan is drawn. Thus, we treat the prior anatomy as a strong tool to guide the data augmentation and reduce the mismatch between labeled and unlabeled images for semi-supervised learning. More specifically, we propose a data augmentation strategy based on partition-and-recovery N$^3$ cubes cross- and within- labeled and unlabeled images. Our strategy encourages unlabeled images to learn organ semantics in relative locations from the labeled images (cross-branch) and enhances the learning ability for small organs (within-branch). For within-branch, we further propose to refine the quality of pseudo labels by blending the learned representations from small cubes to incorporate local attributes. Our method is termed as MagicNet, since it treats the CT volume as a magic-cube and $N^3$-cube partition-and-recovery process matches with the rule of playing a magic-cube. Extensive experiments on two public CT multi-organ datasets demonstrate the effectiveness of MagicNet, and noticeably outperforms state-of-the-art semi-supervised medical image segmentation approaches, with +7% DSC improvement on MACT dataset with 10% labeled images.
translated by 谷歌翻译
自我监督的学习(SSL)通过大量未标记的数据的先知,在各种医学成像任务上取得了出色的性能。但是,对于特定的下游任务,仍然缺乏有关如何选择合适的借口任务和实现细节的指令书。在这项工作中,我们首先回顾了医学成像分析领域中自我监督方法的最新应用。然后,我们进行了广泛的实验,以探索SSL中的四个重要问题用于医学成像,包括(1)自我监督预处理对不平衡数据集的影响,(2)网络体系结构,(3)上游任务对下游任务和下游任务和下游任务的适用性(4)SSL和常用政策用于深度学习的堆叠效果,包括数据重新采样和增强。根据实验结果,提出了潜在的指南,以在医学成像中进行自我监督预处理。最后,我们讨论未来的研究方向并提出问题,以了解新的SSL方法和范式时要注意。
translated by 谷歌翻译
组织病理学图像包含丰富的表型信息和病理模式,这是疾病诊断的黄金标准,对于预测患者预后和治疗结果至关重要。近年来,在临床实践中迫切需要针对组织病理学图像的计算机自动化分析技术,而卷积神经网络代表的深度学习方法已逐渐成为数字病理领域的主流。但是,在该领域获得大量细粒的注释数据是一项非常昂贵且艰巨的任务,这阻碍了基于大量注释数据的传统监督算法的进一步开发。最新的研究开始从传统的监督范式中解放出来,最有代表性的研究是基于弱注释,基于有限的注释的半监督学习范式以及基于自我监督的学习范式的弱监督学习范式的研究图像表示学习。这些新方法引发了针对注释效率的新自动病理图像诊断和分析。通过对130篇论文的调查,我们对从技术和方法论的角度来看,对计算病理学领域中有关弱监督学习,半监督学习以及自我监督学习的最新研究进行了全面的系统综述。最后,我们提出了这些技术的关键挑战和未来趋势。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.
translated by 谷歌翻译