深度学习模型的培训通常需要大量的注释数据,以实现有效的收敛和泛化。然而,获得高质量的注释是一种借鉴和昂贵的过程,因为需要专家放射科学家进行标签任务。在医学图像分析中的半监督学习的研究是至关重要的,因为获得未标记的图像的昂贵比以获得专家放射科医师标记的图像更便宜。基本上,半监督方法利用大量未标记的数据来实现比仅使用小组标记图像更好的训练收敛和泛化。在本文中,我们提出了自我监督的平均教师进行半监督(S $ ^ 2 $ MTS $ ^ 2 $)学习,将自我监督的卑鄙教师预训练与半监督微调相结合。 S $ ^ 2 $ MTS $ ^ 2 $的主要创新是基于联合对比学习的自我监督的平均教师预培训,它使用无限数量的正查询和关键特征来改善平均值 - 老师代表。然后使用具有半监督学习的指数移动平均教师框架进行微调。我们从胸部X-ray14和Chexpert的多标签分类问题上验证了S $ ^ 2 $ MTS $ ^ 2 $,以及iC2018的多级分类,在那里我们表明它优于前一个SOTA半监督的学习方法通过大幅度。
translated by 谷歌翻译
医疗IM年龄分析(MIA)中的有效半监督学习(SSL)必须解决两个挑战:1)在多级(例如病变分类)和多标签(例如,多疾病诊断)问题上, 2)处理不平衡的学习(因为疾病患病率的高度)。解释SSL MIA的一个策略基于伪标签策略,但是有几个缺点。伪标签具有比一致性学习比一致性的精度,它没有针对多级和多标签问题的特定设计,并且可以通过不平衡的学习来挑战。在本文中,与通过阈值选择自信的伪标签的传统方法不同,我们提出了一种新的SSL算法,称为ANT-CURICULUM伪标签(ACPL),这引入了新颖的技术选择信息,改善培训平衡并允许模型。为多标签和多级问题工作,并通过准确的分类器组合估算伪标签(提高伪标签精度)。我们运行广泛的实验,以评估两种公共医学图像分类基准的ACPL:胸部X射线14用于胸部疾病的多标签分类和SISIC2018用于皮肤病变多级分类。我们的方法在两个数据集上胜过以前的SOTA SSL方法。
translated by 谷歌翻译
糖尿病性视网膜病变(DR)是发达国家工人衰老人群中失明的主要原因之一,这是由于糖尿病的副作用降低了视网膜的血液供应。深度神经网络已被广泛用于自动化系统中,以在眼底图像上进行DR分类。但是,这些模型需要大量带注释的图像。在医疗领域,专家的注释昂贵,乏味且耗时。结果,提供了有限数量的注释图像。本文提出了一种半监督的方法,该方法利用未标记的图像和标记的图像来训练一种检测糖尿病性视网膜病的模型。提出的方法通过自我监督的学习使用无监督的预告片,然后使用一小部分标记的图像和知识蒸馏来监督微调,以提高分类任务的性能。在Eyepacs测试和Messidor-2数据集中评估了此方法,仅使用2%的Eyepacs列车标记图像,分别使用0.94和0.89 AUC。
translated by 谷歌翻译
现实世界中的大规模医学图像分析(MIA)数据集面临三个挑战:1)它们包含影响训练收敛和概括的嘈杂标记的样本,2)它们通常每个类别的样本分布不平衡,3)通常包括一个多标签问题,其中样本可以进行多个诊断。当前的方法通常经过培训以解决这些问题的一部分,但是我们不知道可以同时解决这三个问题的方法。在本文中,我们提出了一个新的训练模块,称为非挥发性无偏内存(NVUM),该模型的非挥发性存储在嘈杂的多标签问题上的新正则损失的模型逻辑平均值。我们进一步公正了NVUM更新中的分类预测,以解决不平衡的学习问题。我们进行了广泛的实验,以评估本文提出的新基准测试的NVUM,在该基准上进行了训练,该训练是在嘈杂的多标签不平衡的胸部X射线(CXR)训练集上进行的,由Chest-XRay14和Chexpert组成,并且在测试上进行了测试。清洁多标签CXR数据集Openi和Padchest。我们的方法优于以前的最先进的CXR分类器和以前可以在所有评估上处理嘈杂标签的方法。我们的代码可在https://github.com/fbladl/nvum上找到。
translated by 谷歌翻译
自我监督的学习在视力和NLP方面取得了巨大进展。最近,它也引起了人们对X射线,CT和MRI等各种医学成像方式的广泛关注。现有方法主要集中于构建新的借口自学任务,例如根据医学图像的属性进行重建,方向和掩盖识别。但是,并未完全利用公开可用的自我实施模型。在本文中,我们提出了一个强大而有效的自学框架,用于外科视频理解。我们的主要见解是将知识从大型通用数据集中培训的公开模型中提取知识,以促进对手术视频的自我监督学习。为此,我们首先引入了一种传承语义的培训计划,以获取我们的教师模型,该模型不仅包含了公开可用模型的语义,而且还可以为手术数据提供准确的知识。除了仅具有对比度学习的培训外,我们还引入了一个蒸馏目标,将丰富的学习信息从教师模型转移到手术数据上的自学学习。对两个手术期识别基准的广泛实验表明,我们的框架可以显着提高现有的自我监督学习方法的性能。值得注意的是,我们的框架在低DATA制度下表现出了令人信服的优势。我们的代码可在https://github.com/xmed-lab/distillingself上找到。
translated by 谷歌翻译
使用输入图像,功能或网络扰动的一致性学习已经显示出半监督语义分割的显着结果,但这种方法可能受到未准确的未标记训练图像的预测的严重影响。这些不准确的预测有两种后果:1)基于“严格”的跨熵(CE)损失的培训可以容易地过度造成预测错误,导致确认偏见; 2)应用于这些不准确的预测的扰动将使用可能错误的预测作为训练信号,降低一致性学习。在本文中,我们解决了具有新颖的教师(MT)模型的一致性学习方法的预测准确性问题,包括新的辅助教师,并通过更严格的信心更换MT的均方误差(MSE) - 加权交叉熵(CONF-CE)损失。该模型的准确预测使我们能够利用网络,输入数据和特征扰动的具有挑战性的组合,以改善特征扰动的一致性学习概括,其中包括新的对抗扰动。 Public基准的结果表明,我们的方法通过现场上一个SOTA方法实现了显着的改进。
translated by 谷歌翻译
One paradigm for learning from few labeled examples while making best use of a large amount of unlabeled data is unsupervised pretraining followed by supervised fine-tuning. Although this paradigm uses unlabeled data in a task-agnostic way, in contrast to common approaches to semi-supervised learning for computer vision, we show that it is surprisingly effective for semi-supervised learning on ImageNet. A key ingredient of our approach is the use of big (deep and wide) networks during pretraining and fine-tuning. We find that, the fewer the labels, the more this approach (task-agnostic use of unlabeled data) benefits from a bigger network. After fine-tuning, the big network can be further improved and distilled into a much smaller one with little loss in classification accuracy by using the unlabeled examples for a second time, but in a task-specific way. The proposed semi-supervised learning algorithm can be summarized in three steps: unsupervised pretraining of a big ResNet model using SimCLRv2, supervised fine-tuning on a few labeled examples, and distillation with unlabeled examples for refining and transferring the task-specific knowledge. This procedure achieves 73.9% ImageNet top-1 accuracy with just 1% of the labels (≤13 labeled images per class) using ResNet-50, a 10× improvement in label efficiency over the previous state-of-theart. With 10% of labels, ResNet-50 trained with our method achieves 77.5% top-1 accuracy, outperforming standard supervised training with all of the labels. 1
translated by 谷歌翻译
尽管自我监督的表示学习(SSL)受到社区的广泛关注,但最近的研究认为,当模型大小降低时,其性能将遭受悬崖的下降。当前的方法主要依赖于对比度学习来训练网络,在这项工作中,我们提出了一种简单而有效的蒸馏对比学习(Disco),以大幅度减轻问题。具体而言,我们发现主流SSL方法获得的最终嵌入包含最富有成果的信息,并建议提炼最终的嵌入,以最大程度地将教师的知识传播到轻量级模型中,通过约束学生的最后嵌入与学生的最后嵌入,以使其与该模型保持一致。老师。此外,在实验中,我们发现存在一种被称为蒸馏瓶颈的现象,并存在以扩大嵌入尺寸以减轻此问题。我们的方法在部署过程中不会向轻型模型引入任何额外的参数。实验结果表明,我们的方法在所有轻型模型上都达到了最先进的作用。特别是,当使用RESNET-101/RESNET-50用作教师教授有效网络-B0时,Imagenet上有效网络B0的线性结果非常接近Resnet-101/Resnet-50,但是有效网络B0的参数数量仅为9.4 \%/16.3 \%Resnet-101/resnet-50。代码可从https:// github获得。 com/yuting-gao/disco-pytorch。
translated by 谷歌翻译
无监督的异常检测(UAD)只需要正常(健康)训练图像是实现医学图像分析(MIA)应用的重要工具,例如疾病筛查,因为通常难以收集和注释异常(或疾病)MIA中的图像。然而,严重依赖于正常图像可能导致模型训练过度填写正常类。自我监督的预训练是对这个问题的有效解决方案。遗憾的是,从计算机视觉调整的当前自我监督方法是MIA应用的次优,因为它们不探索设计借口任务或培训过程的MIA域知识。在本文中,我们提出了一种为MIA应用设计的UAD的新的自我监督的预训练方法,通过对比学习(MSACL)命名为多级强大增强。 MSACL基于新颖的优化,以对比正常和多种合成的异常图像,每个类在欧几里德距离和余弦相似度方面强制形成紧密和密集的聚类,其中通过模拟变化数量的病变形成异常图像在正常图像中的不同尺寸和外观。在实验中,我们表明,我们的MSACL预培训使用结肠镜检查,眼底筛选和Covid-19胸部X射线数据集来提高SOTA UAD方法的准确性。
translated by 谷歌翻译
我们提出了将粗大分类标签纳入细粒域中的图像分类器的技术。这种标签通常可以通过较小的努力来获得较小的粒状域,例如根据生物分类法组织类别的自然界。在三个王国组成的半inat数据集上,包括Phylum标签,在使用ImageNet预训练模型的转移学习设置中将物种级别分类精度提高了6%。使用称为FixMatch的最先进的半监督学习算法的分层标签结构提高了1.3%的性能。当提供诸如类或订单的详细标签或从头开始培训时,相对收益更大。但是,我们发现大多数方法对来自新类别的域名数据的存在并不强大。我们提出了一种技术来从层次结构引导的大量未标记图像中选择相关数据,这提高了鲁棒性。总体而言,我们的实验表明,具有粗大分类标签的半监督学习对于细粒度域中的培训分类器是实用的。
translated by 谷歌翻译
监管基于深度学习的方法,产生医学图像分割的准确结果。但是,它们需要大量标记的数据集,并获得它们是一种艰苦的任务,需要临床专业知识。基于半/自我监督的学习方法通​​过利用未标记的数据以及有限的注释数据来解决此限制。最近的自我监督学习方法使用对比损失来从未标记的图像中学习良好的全球层面表示,并在像想象网那样的流行自然图像数据集上实现高性能。在诸如分段的像素级预测任务中,对于学习良好的本地级别表示以及全局表示来说至关重要,以实现更好的准确性。然而,现有的局部对比损失的方法的影响仍然是学习良好本地表现的限制,因为类似于随机增强和空间接近定义了类似和不同的局部区域;由于半/自我监督设置缺乏大规模专家注释,而不是基于当地地区的语义标签。在本文中,我们提出了局部对比损失,以便通过利用从未标记的图像的未标记图像的伪标签获得的语义标签信息来学习用于分割的良好像素级别特征。特别地,我们定义了建议的损失,以鼓励具有相同伪标签/标签的像素的类似表示,同时与数据集中的不同伪标签/标签的像素的表示。我们通过联合优化标记和未标记的集合和仅限于标记集的分割损失,通过联合优化拟议的对比损失来进行基于伪标签的自培训和培训网络。我们在三个公共心脏和前列腺数据集上进行了评估,并获得高分割性能。
translated by 谷歌翻译
尽管对视频表示学习的自我监督预先预测方法的突出成功,但在未标记的预测数据集很小或源任务(预先训练)中的未标记数据和目标任务中标记的数据(Fineetuning)之间的域差异。为了缓解这些问题,我们提出了一种新的方法来通过基于知识相似性蒸馏,Auxskd的辅助预押阶段补充自我监督预测,以便更好地推广,具有明显较少量的视频数据,例如,动力学-100而不是动力学-400。我们的方法通过捕获未标记的视频数据的段之间的相似信息,将其知识迭代地将其知识蒸发到学生模型。然后,学生模型通过利用此先验知识来解决借口任务。我们还介绍了一种新颖的借口任务,视频段速度预测或VSPP,这需要我们的模型来预测输入视频的随机选择段的播放速度,以提供更可靠的自我监督的表示。我们的实验结果表明,在K100上预先训练时,UCF101和HMDB51数据集的最先进结果卓越。此外,我们表明我们的辅助辅助辅助持久性辅助阶段作为最近的艺术的自我监督方法(例如VideOpace和Rspnet),可以在UCF101和HMDB51上提高结果。我们的代码即将发布。
translated by 谷歌翻译
在社区中广泛调查了语义分割,其中最先进的技术基于监督模型。这些模型报告了前所未有的性能,以需要大量的高质量细分面具。为了获得这种注释是非常昂贵的并且特别是在需要像素级注释的语义分割中。在这项工作中,我们通过提出作为半监督语义细分的三级自我训练框架的整体解决方案来解决这个问题。我们技术的关键思想是提取伪掩模统计信息,以减少预测概率的不确定性,同时以多任务方式执行分段一致性。我们通过三级解决方案实现这一目标。首先,我们训练分割网络以产生粗糙的伪掩模,预测概率非常不确定。其次,我们使用一个多任务模型来减少伪掩模的不确定性,该模型强制利用数据丰富的数据统计信息。我们将采用现有方法与半监督语义分割的现有方法进行比较,并在广泛的实验中展示其最先进的性能。
translated by 谷歌翻译
本文为半监督医学图像分割提供了一个简单而有效的两阶段框架。我们的主要洞察力是探索用标记和未标记的(即伪标记)图像的特征表示学习,以增强分段性能。在第一阶段,我们介绍了一种炼层的不确定感知方法,即Aua,以改善产生高质量伪标签的分割性能。考虑到医学图像的固有歧义,Aua自适应地规范了具有低歧义的图像的一致性。为了提高代表学习,我们提出了一种舞台适应性的对比学习方法,包括边界意识的对比损失,以规范第一阶段中标记的图像,并在第二阶段中的原型感知对比损失优化标记和伪标记的图像阶段。边界意识的对比损失仅优化分段边界周围的像素,以降低计算成本。原型感知对比损失通过为每个类构建质心来充分利用标记的图像和伪标记的图像,以减少对比较的计算成本。我们的方法在两个公共医学图像分割基准上实现了最佳结果。值得注意的是,我们的方法在结肠肿瘤分割的骰子上以5.7%的骰子依赖于只有5%标记的图像而表现出5.7%。
translated by 谷歌翻译
我们对自我监督,监督或半监督设置的代表学习感兴趣。在应用自我监督学习的平均移位思想的事先工作,通过拉动查询图像来概括拜尔的想法,不仅更接近其其他增强,而且还可以到其他增强的最近邻居(NNS)。我们认为,学习可以从选择远处与查询相关的邻居选择遥远的邻居。因此,我们建议通过约束最近邻居的搜索空间来概括MSF算法。我们显示我们的方法在SSL设置中优于MSF,当约束使用不同的图像时,并且当约束确保NNS具有与查询相同的伪标签时,在半监控设置中优于培训资源的半监控设置中的爪子。
translated by 谷歌翻译
Deep neural networks have been successfully adopted to diverse domains including pathology classification based on medical images. However, large-scale and high-quality data to train powerful neural networks are rare in the medical domain as the labeling must be done by qualified experts. Researchers recently tackled this problem with some success by taking advantage of models pre-trained on large-scale general domain data. Specifically, researchers took contrastive image-text encoders (e.g., CLIP) and fine-tuned it with chest X-ray images and paired reports to perform zero-shot pathology classification, thus completely removing the need for pathology-annotated images to train a classification model. Existing studies, however, fine-tuned the pre-trained model with the same contrastive learning objective, and failed to exploit the multi-labeled nature of medical image-report pairs. In this paper, we propose a new fine-tuning strategy based on sentence sampling and positive-pair loss relaxation for improving the downstream zero-shot pathology classification performance, which can be applied to any pre-trained contrastive image-text encoders. Our method consistently showed dramatically improved zero-shot pathology classification performance on four different chest X-ray datasets and 3 different pre-trained models (5.77% average AUROC increase). In particular, fine-tuning CLIP with our method showed much comparable or marginally outperformed to board-certified radiologists (0.619 vs 0.625 in F1 score and 0.530 vs 0.544 in MCC) in zero-shot classification of five prominent diseases from the CheXpert dataset.
translated by 谷歌翻译
组织病理学图像包含丰富的表型信息和病理模式,这是疾病诊断的黄金标准,对于预测患者预后和治疗结果至关重要。近年来,在临床实践中迫切需要针对组织病理学图像的计算机自动化分析技术,而卷积神经网络代表的深度学习方法已逐渐成为数字病理领域的主流。但是,在该领域获得大量细粒的注释数据是一项非常昂贵且艰巨的任务,这阻碍了基于大量注释数据的传统监督算法的进一步开发。最新的研究开始从传统的监督范式中解放出来,最有代表性的研究是基于弱注释,基于有限的注释的半监督学习范式以及基于自我监督的学习范式的弱监督学习范式的研究图像表示学习。这些新方法引发了针对注释效率的新自动病理图像诊断和分析。通过对130篇论文的调查,我们对从技术和方法论的角度来看,对计算病理学领域中有关弱监督学习,半监督学习以及自我监督学习的最新研究进行了全面的系统综述。最后,我们提出了这些技术的关键挑战和未来趋势。
translated by 谷歌翻译
自我监督的预训练似乎是在转移学习预培训的有利替代方案。通过在借口任务上综合注释,自我划分允许在对目标任务进行细微调整之前对大量伪标签进行预训练模型。在这项工作中,我们评估了诊断皮肤病变的自学意识,将三个自我监管的管道与具有挑战性的监督基线进行了比较,该管道包括五个测试数据集,其中包括分布式和分布样品的五个测试数据集。我们的结果表明,自学在改善准确性和降低结果的可变性方面都具有竞争力。自我划分证明,对于低训练数据方案($ <1 \,500 $和$ <150 $样本)而言,它特别有用,在该方案中,其稳定结果的能力对于提供合理的结果至关重要。
translated by 谷歌翻译
卷积神经网络(CNN)已经实现了医学图像细分的最先进性能,但需要大量的手动注释进行培训。半监督学习(SSL)方法有望减少注释的要求,但是当数据集大小和注释图像的数量较小时,它们的性能仍然受到限制。利用具有类似解剖结构的现有注释数据集来协助培训,这有可能改善模型的性能。然而,由于目标结构的外观不同甚至成像方式,跨解剖结构域的转移进一步挑战。为了解决这个问题,我们提出了跨解剖结构域适应(CS-CADA)的对比度半监督学习,该学习适应一个模型以在目标结构域中细分相似的结构,这仅需要通过利用一组现有现有的现有的目标域中的限制注释源域中相似结构的注释图像。我们使用特定领域的批归归量表(DSBN)来单独地标准化两个解剖域的特征图,并提出跨域对比度学习策略,以鼓励提取域不变特征。它们被整合到一个自我兼容的均值老师(SE-MT)框架中,以利用具有预测一致性约束的未标记的目标域图像。广泛的实验表明,我们的CS-CADA能够解决具有挑战性的跨解剖结构域移位问题,从而在视网膜血管图像和心脏MR图像的帮助下,在X射线图像中准确分割冠状动脉,并借助底底图像,分别仅给定目标域中的少量注释。
translated by 谷歌翻译
Computer vision and machine learning are playing an increasingly important role in computer-assisted diagnosis; however, the application of deep learning to medical imaging has challenges in data availability and data imbalance, and it is especially important that models for medical imaging are built to be trustworthy. Therefore, we propose TRUDLMIA, a trustworthy deep learning framework for medical image analysis, which adopts a modular design, leverages self-supervised pre-training, and utilizes a novel surrogate loss function. Experimental evaluations indicate that models generated from the framework are both trustworthy and high-performing. It is anticipated that the framework will support researchers and clinicians in advancing the use of deep learning for dealing with public health crises including COVID-19.
translated by 谷歌翻译