自我监督的预训练似乎是在转移学习预培训的有利替代方案。通过在借口任务上综合注释,自我划分允许在对目标任务进行细微调整之前对大量伪标签进行预训练模型。在这项工作中,我们评估了诊断皮肤病变的自学意识,将三个自我监管的管道与具有挑战性的监督基线进行了比较,该管道包括五个测试数据集,其中包括分布式和分布样品的五个测试数据集。我们的结果表明,自学在改善准确性和降低结果的可变性方面都具有竞争力。自我划分证明,对于低训练数据方案($ <1 \,500 $和$ <150 $样本)而言,它特别有用,在该方案中,其稳定结果的能力对于提供合理的结果至关重要。
translated by 谷歌翻译
在过去几年中,无监督的学习取得了很大的进展,特别是通过对比的自我监督学习。用于基准测试自我监督学习的主导数据集已经想象,最近的方法正在接近通过完全监督培训实现的性能。然而,ImageNet DataSet在很大程度上是以对象为中心的,并且目前尚不清楚这些方法的广泛不同的数据集和任务,这些方法是非以对象为中心的,例如数字病理学。虽然自我监督的学习已经开始在这个领域探讨了令人鼓舞的结果,但有理由看起来更接近这个环境与自然图像和想象成的不同。在本文中,我们对组织病理学进行了对比学学习的深入分析,引脚指向对比物镜的表现如何不同,由于组织病理学数据的特征。我们提出了一些考虑因素,例如对比目标和超参数调整的观点。在大量的实验中,我们分析了组织分类的下游性能如何受到这些考虑因素的影响。结果指出了对比学习如何减少数字病理中的注释工作,但需要考虑特定的数据集特征。为了充分利用对比学习目标,需要不同的视野和超参数校准。我们的结果为实现组织病理学应用的自我监督学习的全部潜力铺平了道路。
translated by 谷歌翻译
Computational pathology can lead to saving human lives, but models are annotation hungry and pathology images are notoriously expensive to annotate. Self-supervised learning has shown to be an effective method for utilizing unlabeled data, and its application to pathology could greatly benefit its downstream tasks. Yet, there are no principled studies that compare SSL methods and discuss how to adapt them for pathology. To address this need, we execute the largest-scale study of SSL pre-training on pathology image data, to date. Our study is conducted using 4 representative SSL methods on diverse downstream tasks. We establish that large-scale domain-aligned pre-training in pathology consistently out-performs ImageNet pre-training in standard SSL settings such as linear and fine-tuning evaluations, as well as in low-label regimes. Moreover, we propose a set of domain-specific techniques that we experimentally show leads to a performance boost. Lastly, for the first time, we apply SSL to the challenging task of nuclei instance segmentation and show large and consistent performance improvements under diverse settings.
translated by 谷歌翻译
自我监督的学习(SSL)通过大量未标记的数据的先知,在各种医学成像任务上取得了出色的性能。但是,对于特定的下游任务,仍然缺乏有关如何选择合适的借口任务和实现细节的指令书。在这项工作中,我们首先回顾了医学成像分析领域中自我监督方法的最新应用。然后,我们进行了广泛的实验,以探索SSL中的四个重要问题用于医学成像,包括(1)自我监督预处理对不平衡数据集的影响,(2)网络体系结构,(3)上游任务对下游任务和下游任务和下游任务的适用性(4)SSL和常用政策用于深度学习的堆叠效果,包括数据重新采样和增强。根据实验结果,提出了潜在的指南,以在医学成像中进行自我监督预处理。最后,我们讨论未来的研究方向并提出问题,以了解新的SSL方法和范式时要注意。
translated by 谷歌翻译
胸部射线照相是一种相对便宜,广泛的医疗程序,可传达用于进行诊断决策的关键信息。胸部X射线几乎总是用于诊断呼吸系统疾病,如肺炎或最近的Covid-19。在本文中,我们提出了一个自我监督的深神经网络,其在未标记的胸部X射线数据集上掠夺。学习的陈述转移到下游任务 - 呼吸系统疾病的分类。在四个公共数据集获得的结果表明,我们的方法在不需要大量标记的培训数据的情况下产生竞争力。
translated by 谷歌翻译
高质量注释的医学成像数据集的稀缺性是一个主要问题,它与医学成像分析领域的机器学习应用相撞并阻碍了其进步。自我监督学习是一种最近的培训范式,可以使学习强大的表示无需人类注释,这可以被视为有效的解决方案,以解决带注释的医学数据的稀缺性。本文回顾了自我监督学习方法的最新研究方向,用于图像数据,并将其专注于其在医学成像分析领域的应用。本文涵盖了从计算机视野领域的最新自我监督学习方法,因为它们适用于医学成像分析,并将其归类为预测性,生成性和对比性方法。此外,该文章涵盖了40个在医学成像分析中自学学习领域的最新研究论文,旨在阐明该领域的最新创新。最后,本文以该领域的未来研究指示结束。
translated by 谷歌翻译
对表格数据的深度学习的最新工作表明了深层表格模型的强劲表现,通常会弥合梯度增强的决策树和神经网络之间的差距。除了准确性之外,神经模型的主要优点是它们学习可重复使用的功能,并且在新域中很容易进行微调。该属性通常在计算机视觉和自然语言应用中被利用,在特定于任务的培训数据稀缺时,转移学习是必不可少的。在这项工作中,我们证明上游数据使表格神经网络比广泛使用的GBDT模型具有决定性的优势。我们为表格转移学习提出了一个现实的医学诊断基准,并提出了使用上游数据来通过各种表格神经网络体系结构来提高性能的方法指南。最后,我们为上游和下游特征集不同的情况提出了一种伪特征方法,在现实世界中,特定于表格的问题广泛。我们的代码可在https://github.com/levinroman/tabular-transfer-learning上找到。
translated by 谷歌翻译
近年来,随着深度神经网络方法的普及,手术计算机视觉领域经历了相当大的突破。但是,用于培训的标准全面监督方法需要大量的带注释的数据,从而实现高昂的成本;特别是在临床领域。已经开始在一般计算机视觉社区中获得吸引力的自我监督学习(SSL)方法代表了对这些注释成本的潜在解决方案,从而使仅从未标记的数据中学习有用的表示形式。尽管如此,SSL方法在更复杂和有影响力的领域(例如医学和手术)中的有效性仍然有限且未开发。在这项工作中,我们通过在手术计算机视觉的背景下研究了四种最先进的SSL方法(Moco V2,Simclr,Dino,SWAV),以解决这一关键需求。我们对这些方法在cholec80数据集上的性能进行了广泛的分析,以在手术环境理解,相位识别和工具存在检测中为两个基本和流行的任务。我们检查了它们的参数化,然后在半监督设置中相对于训练数据数量的行为。如本工作所述和进行的那样,将这些方法的正确转移到手术中,可以使SSL的一般用途获得可观的性能 - 相位识别率高达7%,而在工具存在检测方面,则具有20% - 半监督相位识别方法高达14%。该代码将在https://github.com/camma-public/selfsupsurg上提供。
translated by 谷歌翻译
这项工作提出了一种新型的自我监督的预训练方法,以学习有效的表示,而没有在组织病理学医学图像上使用放大倍率的因素进行标签。其他最先进的工作主要集中在完全监督的学习方法上,这些学习方法严重依赖人类注释。但是,标记和未标记数据的稀缺性是组织病理学的长期挑战。当前,没有标签的表示学习仍未探索组织病理学领域。提出的方法是放大事先的对比相似性(MPC),可以通过利用放大倍率,电感转移和减少人类先验的宽度乳腺癌数据集中的无标签来进行自我监督的学习。当仅20%的标签用于微调和表现以前的工作中,在完全监督的学习环境中,该方法与恶性分类的最新学习相匹配。它提出了一个假设,并提供了经验证据来支持,从而减少人类优先导致自学​​中有效表示学习。这项工作的实施可在github-https://github.com/prakashchhipa/magnification-prior-self-supervised-method上在线获得。
translated by 谷歌翻译
对比度学习最近在无监督的视觉表示学习中显示出巨大的潜力。在此轨道中的现有研究主要集中于图像内不变性学习。学习通常使用丰富的图像内变换来构建正对,然后使用对比度损失最大化一致性。相反,相互影响不变性的优点仍然少得多。利用图像间不变性的一个主要障碍是,尚不清楚如何可靠地构建图像间的正对,并进一步从它们中获得有效的监督,因为没有配对注释可用。在这项工作中,我们提出了一项全面的实证研究,以更好地了解从三个主要组成部分的形象间不变性学习的作用:伪标签维护,采样策略和决策边界设计。为了促进这项研究,我们引入了一个统一的通用框架,该框架支持无监督的内部和间形内不变性学习的整合。通过精心设计的比较和分析,揭示了多个有价值的观察结果:1)在线标签收敛速度比离线标签更快; 2)半硬性样品比硬否定样品更可靠和公正; 3)一个不太严格的决策边界更有利于形象间的不变性学习。借助所有获得的食谱,我们的最终模型(即InterCLR)对多个标准基准测试的最先进的内图内不变性学习方法表现出一致的改进。我们希望这项工作将为设计有效的无监督间歇性不变性学习提供有用的经验。代码:https://github.com/open-mmlab/mmselfsup。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
现有的少量学习(FSL)方法依赖于具有大型标记数据集的培训,从而阻止它们利用丰富的未标记数据。从信息理论的角度来看,我们提出了一种有效的无监督的FSL方法,并以自学意义进行学习表示。遵循信息原理,我们的方法通过捕获数据的内在结构来学习全面的表示。具体而言,我们以低偏置的MI估计量来最大化实例及其表示的相互信息(MI),以执行自我监督的预训练。我们的自我监督模型对所见类别的可区分特征的监督预训练没有针对可见的阶级的偏见,从而对看不见的类别进行了更好的概括。我们解释说,受监督的预训练和自我监督的预训练实际上正在最大化不同的MI目标。进一步进行了广泛的实验,以通过各种训练环境分析其FSL性能。令人惊讶的是,结果表明,在适当条件下,自我监管的预训练可以优于监督预训练。与最先进的FSL方法相比,我们的方法在没有基本类别的任何标签的情况下,在广泛使用的FSL基准上实现了可比的性能。
translated by 谷歌翻译
通过自学学习的视觉表示是一项极具挑战性的任务,因为网络需要在没有监督提供的主动指导的情况下筛选出相关模式。这是通过大量数据增强,大规模数据集和过量量的计算来实现的。视频自我监督学习(SSL)面临着额外的挑战:视频数据集通常不如图像数据集那么大,计算是一个数量级,并且优化器所必须通过的伪造模式数量乘以几倍。因此,直接从视频数据中学习自我监督的表示可能会导致次优性能。为了解决这个问题,我们建议在视频表示学习框架中利用一个以自我或语言监督为基础的强大模型,并在不依赖视频标记的数据的情况下学习强大的空间和时间信息。为此,我们修改了典型的基于视频的SSL设计和目标,以鼓励视频编码器\ textit {subsume}基于图像模型的语义内容,该模型在通用域上训练。所提出的算法被证明可以更有效地学习(即在较小的时期和较小的批次中),并在单模式SSL方法中对标准下游任务进行了新的最新性能。
translated by 谷歌翻译
Well-annotated medical datasets enable deep neural networks (DNNs) to gain strong power in extracting lesion-related features. Building such large and well-designed medical datasets is costly due to the need for high-level expertise. Model pre-training based on ImageNet is a common practice to gain better generalization when the data amount is limited. However, it suffers from the domain gap between natural and medical images. In this work, we pre-train DNNs on ultrasound (US) domains instead of ImageNet to reduce the domain gap in medical US applications. To learn US image representations based on unlabeled US videos, we propose a novel meta-learning-based contrastive learning method, namely Meta Ultrasound Contrastive Learning (Meta-USCL). To tackle the key challenge of obtaining semantically consistent sample pairs for contrastive learning, we present a positive pair generation module along with an automatic sample weighting module based on meta-learning. Experimental results on multiple computer-aided diagnosis (CAD) problems, including pneumonia detection, breast cancer classification, and breast tumor segmentation, show that the proposed self-supervised method reaches state-of-the-art (SOTA). The codes are available at https://github.com/Schuture/Meta-USCL.
translated by 谷歌翻译
自我监督学习的最新进展证明了多种视觉任务的有希望的结果。高性能自我监督方法中的一个重要成分是通过培训模型使用数据增强,以便在嵌入空间附近的相同图像的不同增强视图。然而,常用的增强管道整体地对待图像,忽略图像的部分的语义相关性-e.g。主题与背景 - 这可能导致学习杂散相关性。我们的工作通过调查一类简单但高度有效的“背景增强”来解决这个问题,这鼓励模型专注于语义相关内容,劝阻它们专注于图像背景。通过系统的调查,我们表明背景增强导致在各种任务中跨越一系列最先进的自我监督方法(MOCO-V2,BYOL,SWAV)的性能大量改进。 $ \ SIM $ + 1-2%的ImageNet收益,使得与监督基准的表现有关。此外,我们发现有限标签设置的改进甚至更大(高达4.2%)。背景技术增强还改善了许多分布换档的鲁棒性,包括天然对抗性实例,想象群-9,对抗性攻击,想象成型。我们还在产生了用于背景增强的显着掩模的过程中完全无监督的显着性检测进展。
translated by 谷歌翻译
监督的机器学习为各种计算机视觉问题提供了最新的解决方案。但是,对大量标记的培训数据的需求限制了这些算法在稀缺或昂贵的情况下的这些算法的功能。自我监督的学习提供了一种方法,可以通过对未标记数据的特定域进行预处理模型来降低对手动注释数据的需求。在这种方法中,标记的数据完全需要用于微调下游任务的模型。医疗图像细分是一个标签数据需要专家知识并收集大型标记数据集的领域。因此,自我监督的学习算法有望在该领域进行实质性改进。尽管如此,自我监督的学习算法很少用于预识医学图像分割网络。在本文中,我们详细阐述并分析了对下游医学图像分割的监督和自我监督预审方法的有效性,重点是收敛和数据效率。我们发现,对自然图像和目标域特异性图像进行自我监督的预测会导致最快,最稳定的下游收敛性。在我们对ACDC心脏分割数据集的实验中,与Imagenet预处理的模型相比,这种预处理的方法可实现4-5倍的微调收敛。我们还表明,这种方法需要在域特异性数据上进行少于五个时期的预处理,以在下游收敛时间进行这种改进。最后,我们发现,在低数据方案中,有监督的Imagenet预处理达到了最佳准确性,需要少于100个带注释的样品才能实现接近最小误差。
translated by 谷歌翻译
具有病理注释的计算机断层扫描(CT)样品很难获得。结果,计算机辅助诊断(CAD)算法在小型数据集(例如带有1,018个样本的LIDC-IDRI)上进行了培训,从而限制了其准确性和可靠性。在过去的五年中,通过二维(2D)和三维(3D)自我监督学习(SSL)算法为CT病变的无监督表示量身定制了几项作品。 2D算法很难捕获3D信息,并且现有的3D算法在计算上很重。轻巧的3D SSL仍然是要探索的边界。在本文中,我们提出了螺旋形对比度学习(SCL),该学习以计算有效的方式产生3D表示。 SCL首先使用信息保护螺旋变换将3D病变转换为2D平面,然后使用2D对比度学习学习转换不变的特征。为了进行增强,我们考虑自然图像增强和医疗图像增强。我们通过在嵌入层上训练分类头来评估SCL。实验结果表明,对于无监督的代表性学习,SCL在LIDC-IDRI(89.72%),LNDB(82.09%)和天奇(90.16%)上实现了最先进的准确性。使用10%的带计算的注释数据,SCL的性能与监督学习算法的性能相当(Lidc-Idri的85.75%比85.03%,78.20%vs. 73.44%的LNDB和87.85%vs. 83.34%vs. 83.34%and。天奇,分别)。同时,与其他3D SSL算法相比,SCL将计算工作减少了66.98%,这证明了该方法在无监督的预训练中的效率。
translated by 谷歌翻译
我们对自我监督,监督或半监督设置的代表学习感兴趣。在应用自我监督学习的平均移位思想的事先工作,通过拉动查询图像来概括拜尔的想法,不仅更接近其其他增强,而且还可以到其他增强的最近邻居(NNS)。我们认为,学习可以从选择远处与查询相关的邻居选择遥远的邻居。因此,我们建议通过约束最近邻居的搜索空间来概括MSF算法。我们显示我们的方法在SSL设置中优于MSF,当约束使用不同的图像时,并且当约束确保NNS具有与查询相同的伪标签时,在半监控设置中优于培训资源的半监控设置中的爪子。
translated by 谷歌翻译
Contrastive learning has become a key component of self-supervised learning approaches for computer vision. By learning to embed two augmented versions of the same image close to each other and to push the embeddings of different images apart, one can train highly transferable visual representations. As revealed by recent studies, heavy data augmentation and large sets of negatives are both crucial in learning such representations. At the same time, data mixing strategies, either at the image or the feature level, improve both supervised and semi-supervised learning by synthesizing novel examples, forcing networks to learn more robust features. In this paper, we argue that an important aspect of contrastive learning, i.e. the effect of hard negatives, has so far been neglected. To get more meaningful negative samples, current top contrastive self-supervised learning approaches either substantially increase the batch sizes, or keep very large memory banks; increasing memory requirements, however, leads to diminishing returns in terms of performance. We therefore start by delving deeper into a top-performing framework and show evidence that harder negatives are needed to facilitate better and faster learning. Based on these observations, and motivated by the success of data mixing, we propose hard negative mixing strategies at the feature level, that can be computed on-the-fly with a minimal computational overhead. We exhaustively ablate our approach on linear classification, object detection, and instance segmentation and show that employing our hard negative mixing procedure improves the quality of visual representations learned by a state-of-the-art self-supervised learning method.Project page: https://europe.naverlabs.com/mochi 34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
使用超越欧几里德距离的神经网络,深入的Bregman分歧测量数据点的分歧,并且能够捕获分布的发散。在本文中,我们提出了深深的布利曼对视觉表现的对比学习的分歧,我们的目标是通过基于功能Bregman分歧培训额外的网络来提高自我监督学习中使用的对比损失。与完全基于单点之间的分歧的传统对比学学习方法相比,我们的框架可以捕获分布之间的发散,这提高了学习表示的质量。我们展示了传统的对比损失和我们提出的分歧损失优于基线的结合,并且最先前的自我监督和半监督学习的大多数方法在多个分类和对象检测任务和数据集中。此外,学习的陈述在转移到其他数据集和任务时概括了良好。源代码和我们的型号可用于补充,并将通过纸张释放。
translated by 谷歌翻译