学习无标记数据的判别性表示是一项具有挑战性的任务。对比性的自我监督学习提供了一个框架,可以使用简单的借口任务中的相似性措施来学习有意义的表示。在这项工作中,我们为使用图像贴片上的对比度学习而无需使用明确的借口任务或任何进一步标记的微调来提出一个简单有效的框架,用于使用对比度学习进行自我监督的图像分割。完全卷积的神经网络(FCNN)以自我监督的方式进行训练,以辨别输入图像中的特征并获得置信图,从而捕获网络对同一类的对象的信念。根据对比度学习的置信图中的平均熵对正 - 和负斑进行采样。当正面斑块之间的信息分离很小时,假定会收敛,而正阴对对很大。我们评估了从多个组织病理学数据集分割核的任务,并通过相关的自我监督和监督方法显示出可比的性能。所提出的模型仅由一个具有10.8K参数的简单FCNN组成,需要大约5分钟才能收敛于高分辨率显微镜数据集,该数据集比相关的自我监督方法小的数量级以获得相似的性能。
translated by 谷歌翻译
监管基于深度学习的方法,产生医学图像分割的准确结果。但是,它们需要大量标记的数据集,并获得它们是一种艰苦的任务,需要临床专业知识。基于半/自我监督的学习方法通​​过利用未标记的数据以及有限的注释数据来解决此限制。最近的自我监督学习方法使用对比损失来从未标记的图像中学习良好的全球层面表示,并在像想象网那样的流行自然图像数据集上实现高性能。在诸如分段的像素级预测任务中,对于学习良好的本地级别表示以及全局表示来说至关重要,以实现更好的准确性。然而,现有的局部对比损失的方法的影响仍然是学习良好本地表现的限制,因为类似于随机增强和空间接近定义了类似和不同的局部区域;由于半/自我监督设置缺乏大规模专家注释,而不是基于当地地区的语义标签。在本文中,我们提出了局部对比损失,以便通过利用从未标记的图像的未标记图像的伪标签获得的语义标签信息来学习用于分割的良好像素级别特征。特别地,我们定义了建议的损失,以鼓励具有相同伪标签/标签的像素的类似表示,同时与数据集中的不同伪标签/标签的像素的表示。我们通过联合优化标记和未标记的集合和仅限于标记集的分割损失,通过联合优化拟议的对比损失来进行基于伪标签的自培训和培训网络。我们在三个公共心脏和前列腺数据集上进行了评估,并获得高分割性能。
translated by 谷歌翻译
使用深度学习模型从组织学数据中诊断癌症提出了一些挑战。这些图像中关注区域(ROI)的癌症分级和定位通常依赖于图像和像素级标签,后者需要昂贵的注释过程。深度弱监督的对象定位(WSOL)方法为深度学习模型的低成本培训提供了不同的策略。仅使用图像级注释,可以训练这些方法以对图像进行分类,并为ROI定位进行分类类激活图(CAM)。本文综述了WSOL的​​最先进的DL方法。我们提出了一种分类法,根据模型中的信息流,将这些方法分为自下而上和自上而下的方法。尽管后者的进展有限,但最近的自下而上方法目前通过深层WSOL方法推动了很多进展。早期作品的重点是设计不同的空间合并功能。但是,这些方法达到了有限的定位准确性,并揭示了一个主要限制 - 凸轮的不足激活导致了高假阴性定位。随后的工作旨在减轻此问题并恢复完整的对象。评估和比较了两个具有挑战性的组织学数据集的分类和本地化准确性,对我们的分类学方法进行了评估和比较。总体而言,结果表明定位性能差,特别是对于最初设计用于处理自然图像的通用方法。旨在解决组织学数据挑战的方法产生了良好的结果。但是,所有方法都遭受高假阳性/阴性定位的影响。在组织学中应用深WSOL方法的应用是四个关键的挑战 - 凸轮的激活下/过度激活,对阈值的敏感性和模型选择。
translated by 谷歌翻译
语义图像分割是手术中的背景知识和自治机器人的重要前提。本领域的状态专注于在微创手术期间获得的传统RGB视频数据,但基于光谱成像数据的全景语义分割并在开放手术期间获得几乎没有注意到日期。为了解决文献中的这种差距,我们正在研究基于在开放手术环境中获得的猪的高光谱成像(HSI)数据的以下研究问题:(1)基于神经网络的HSI数据的充分表示是完全自动化的器官分割,尤其是关于数据的空间粒度(像素与Superpixels与Patches与完整图像)的空间粒度? (2)在执行语义器官分割时,是否有利用HSI数据使用HSI数据,即RGB数据和处理的HSI数据(例如氧合等组织参数)?根据基于20猪的506个HSI图像的全面验证研究,共注释了19个类,基于深度的学习的分割性能 - 贯穿模态 - 与输入数据的空间上下文一致。未处理的HSI数据提供优于RGB数据或来自摄像机提供商的处理数据,其中优势随着输入到神经网络的输入的尺寸而增加。最大性能(应用于整个图像的HSI)产生了0.89(标准偏差(SD)0.04)的平均骰子相似度系数(DSC),其在帧间间变异性(DSC为0.89(SD 0.07)的范围内。我们得出结论,HSI可以成为全自动手术场景理解的强大的图像模型,其具有传统成像的许多优点,包括恢复额外功能组织信息的能力。
translated by 谷歌翻译
在过去几年中,无监督的学习取得了很大的进展,特别是通过对比的自我监督学习。用于基准测试自我监督学习的主导数据集已经想象,最近的方法正在接近通过完全监督培训实现的性能。然而,ImageNet DataSet在很大程度上是以对象为中心的,并且目前尚不清楚这些方法的广泛不同的数据集和任务,这些方法是非以对象为中心的,例如数字病理学。虽然自我监督的学习已经开始在这个领域探讨了令人鼓舞的结果,但有理由看起来更接近这个环境与自然图像和想象成的不同。在本文中,我们对组织病理学进行了对比学学习的深入分析,引脚指向对比物镜的表现如何不同,由于组织病理学数据的特征。我们提出了一些考虑因素,例如对比目标和超参数调整的观点。在大量的实验中,我们分析了组织分类的下游性能如何受到这些考虑因素的影响。结果指出了对比学习如何减少数字病理中的注释工作,但需要考虑特定的数据集特征。为了充分利用对比学习目标,需要不同的视野和超参数校准。我们的结果为实现组织病理学应用的自我监督学习的全部潜力铺平了道路。
translated by 谷歌翻译
医学图像分割或计算voxelwise语义面具是一个基本又具有挑战性的任务,用于计算体素级语义面具。为了提高编码器 - 解码器神经网络在大型临床队列中执行这项任务的能力,对比学习提供了稳定模型初始化和增强编码器而无需标签的机会。然而,多个目标对象(具有不同的语义含义)可能存在于单个图像中,这使得适应传统的对比学习方法从普遍的“图像级分类”到“像素级分段”中的问题。在本文中,我们提出了一种简单的语义感知对比学习方法,利用注意掩模来推进多对象语义分割。简而言之,我们将不同的语义对象嵌入不同的群集而不是传统的图像级嵌入。我们在与内部数据和Miccai挑战2015 BTCV数据集中的多器官医学图像分段任务中评估我们提出的方法。与目前的最先进的培训策略相比,我们拟议的管道分别产生了两种医学图像分割队列的骰子评分的大幅提高5.53%和6.09%(P值<0.01)。通过Pascal VOC 2012 DataSet进一步评估了所提出的方法的性能,并在MiOU(P值<0.01)上实现了2.75%的大幅提高。
translated by 谷歌翻译
医学计算机视觉的最新自我监督进步利用了在下游任务(例如分割)之前预处理的全球和局部解剖自我相似性。但是,当前方法假设I.I.D.图像采集是在临床研究设计中无效的,其中随访纵向扫描跟踪特定于主体的时间变化。此外,现有的自我监督方法用于医学上相关的图像到图像体系结构仅利用空间或时间自相似性,并且仅通过在单个图像尺度上应用的损失来进行,而天真的多尺度空间时空扩展崩溃了解决方案。对于这些目的,本文做出了两种贡献:(1)它提出了一种局部和多规模的时空表示方法,用于对纵向图像进行训练的图像到图像架构。它利用了学到的多尺度内部主体内特征的时空自相似性来进行训练,并开发出几种特征正规化,以避免崩溃的身份表示。 (2)在填充期间,它提出了一个令人惊讶的简单的自我监督分割一致性正规化以利用受试者内部的相关性。该框架以单次分割设置为基准,该框架的表现优于良好调整的随机定位基线和为I.I.D设计的当前自我监督技术。和纵向数据集。在纵向神经退行性的成年MRI和发育的婴儿脑MRI中,这些改进都得到了证明,并产生了更高的性能和纵向一致性。
translated by 谷歌翻译
Jitendra Malik once said, "Supervision is the opium of the AI researcher". Most deep learning techniques heavily rely on extreme amounts of human labels to work effectively. In today's world, the rate of data creation greatly surpasses the rate of data annotation. Full reliance on human annotations is just a temporary means to solve current closed problems in AI. In reality, only a tiny fraction of data is annotated. Annotation Efficient Learning (AEL) is a study of algorithms to train models effectively with fewer annotations. To thrive in AEL environments, we need deep learning techniques that rely less on manual annotations (e.g., image, bounding-box, and per-pixel labels), but learn useful information from unlabeled data. In this thesis, we explore five different techniques for handling AEL.
translated by 谷歌翻译
在这项工作中,我们引入了削减(对对比和无监督的分割培训),这是第一个完全无监督的深度学习框架,以进行医学图像细分,从而促进了未经标记或注释的绝大多数成像数据的使用。将医学图像分割成感兴趣的区域是促进患者诊断和定量研究的关键任务。该细分的一个主要限制因素是缺乏标记的数据,因为在注释者之间获得每组新的成像数据或任务的专家注释可能是昂贵,劳动力且不一致的:因此,我们利用基于Pixel-的自学意义图像本身的居中补丁。我们无监督的方法是基于对比度学习和自动编码方面的培训目标。以前的医学图像细分学习方法集中在图像级对比度训练上,而不是我们的图像内贴片级别的方法,或者将其用作一项预训练的任务,此后网络之后需要进一步监督培训。相比之下,我们构建了第一个完全无监督的框架,该框架在以像素为中心的斑点级别上运行。具体来说,我们添加了新颖的增强,补丁重建损失,并引入了一个新的像素聚类和识别框架。我们的模型在几个关键的医学成像任务上取得了改进的结果,这是通过对视网膜图像的地理萎缩(GA)区域进行分割的任务进行了固定的专家注释的验证。
translated by 谷歌翻译
A key requirement for the success of supervised deep learning is a large labeled dataset -a condition that is difficult to meet in medical image analysis. Selfsupervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark. The code is made public at https://github.com/krishnabits001/domain_specific_cl. 34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
当目标是将非常大的图像与微小的信息对象分类非常大的图像时,计算机愿景中的应用越来越多的计算机愿景中的应用程序越来越多地挑战。具体而言,这些分类任务面临两个关键挑战:$ i $)输入图像的大小通常按照MEGA或GIGA - 像素的顺序,然而,由于内存约束,现有的深层架构不容易操作在这种大图像上因此,我们寻求一种进程的记忆有效的方法来处理这些图像;和II $)只有非常小的输入图像的输入图像是信息的信息,导致对图像比率的低感兴趣区域(ROI)。然而,大多数当前的卷积神经网络(CNNS)被设计用于具有相对大的ROI和小图像尺寸(Sub-Peapixel)的图像分类数据集。现有方法孤立地解决了这两个挑战。我们介绍了一个端到端的CNN模型被称为缩放网络,利用分层注意采样,用于使用单个GPU分类大型物体。我们在四个大图像组织病理学,道路场和卫星成像数据集中评估我们的方法,以及一个简谓的病理学数据集。实验结果表明,我们的模型比现有方法达到更高的准确性,同时需要更少的内存资源。
translated by 谷歌翻译
A hallmark of the deep learning era for computer vision is the successful use of large-scale labeled datasets to train feature representations for tasks ranging from object recognition and semantic segmentation to optical flow estimation and novel view synthesis of 3D scenes. In this work, we aim to learn dense discriminative object representations for low-shot category recognition without requiring any category labels. To this end, we propose Deep Object Patch Encodings (DOPE), which can be trained from multiple views of object instances without any category or semantic object part labels. To train DOPE, we assume access to sparse depths, foreground masks and known cameras, to obtain pixel-level correspondences between views of an object, and use this to formulate a self-supervised learning task to learn discriminative object patches. We find that DOPE can directly be used for low-shot classification of novel categories using local-part matching, and is competitive with and outperforms supervised and self-supervised learning baselines. Code and data available at https://github.com/rehg-lab/dope_selfsup.
translated by 谷歌翻译
监督的深度学习模型取决于大量标记的数据。不幸的是,收集和注释包含所需更改的零花态样本是耗时和劳动密集型的。从预训练模型中转移学习可有效减轻遥感(RS)变化检测(CD)中标签不足。我们探索在预训练期间使用语义信息的使用。不同于传统的监督预训练,该预训练从图像到标签,我们将语义监督纳入了自我监督的学习(SSL)框架中。通常,多个感兴趣的对象(例如,建筑物)以未经切割的RS图像分布在各个位置。我们没有通过全局池操纵图像级表示,而是在每个像素嵌入式上引入点级监督以学习空间敏感的特征,从而使下游密集的CD受益。为了实现这一目标,我们通过使用语义掩码在视图之间的重叠区域上通过类平衡的采样获得了多个点。我们学会了一个嵌入式空间,将背景和前景点分开,并将视图之间的空间对齐点齐聚在一起。我们的直觉是导致的语义歧视性表示与无关的变化不变(照明和无关紧要的土地覆盖)可能有助于改变识别。我们在RS社区中免费提供大规模的图像面罩,用于预训练。在三个CD数据集上进行的大量实验验证了我们方法的有效性。我们的表现明显优于Imagenet预训练,内域监督和几种SSL方法。经验结果表明我们的预训练提高了CD模型的概括和数据效率。值得注意的是,我们使用20%的培训数据获得了比基线(随机初始化)使用100%数据获得竞争结果。我们的代码可用。
translated by 谷歌翻译
必须在密集的注释图像上培训最先进的实例分段方法。虽然一般而言,这一要求对于生物医学图像尤其令人生畏,其中域专业知识通常需要注释,没有大的公共数据收集可用于预培训。我们建议通过基于非空间嵌入的非空间嵌入的联盟分割方法来解决密集的注释瓶颈,该方法利用所学习的嵌入空间的结构以可分散的方式提取单个实例。然后可以将分割损耗直接应用于实例,整体管道可以以完全或弱监督的方式培训,包括积极解贴的监管的具有挑战性的情况,其中为未标记的部分引入了一种新的自我监督的一致性损失训练数据。我们在不同显微镜模型以及城市景观和CVPPP实例分段基准中评估了对2D和3D分段问题的提出的方法,在后者上实现最先进的结果。该代码可用于:https://github.com/kreshuklab/spoco
translated by 谷歌翻译
组织分割是病理检查的主要主机,而手动描述则过于繁重。为了协助这一耗时和主观的手动步骤,研究人员已经设计了自动在病理图像中分割结构的方法。最近,自动化机器和基于深度学习的方法主导了组织分割研究。但是,大多数基于机器和深度学习的方法都是使用大量培训样本进行监督和开发的,其中PixelWise注释很昂贵,有时无法获得。本文通过将端到端的深层混合模型与有限的指标集成以获取准确的语义组织分割,从而引入了一种新颖的无监督学习范式。该约束旨在在计算优化函数期间集中深层混合模型的组成部分。这样做,可以大大减少当前无监督学习方法中常见的多余或空的班级问题。通过对公共和内部数据集的验证,拟议的深度约束高斯网络在组织细分方面取得了更好的性能(Wilcoxon签名级测试)更好的性能(平均骰子得分分别为0.737和0.735),具有改善与其他现有的无监督分割方法相比。此外,该方法与完全监督的U-NET相比,提出的方法具有相似的性能(P值> 0.05)。
translated by 谷歌翻译
在过去的几年中,用于计算机视觉的深度学习技术的快速发展极大地促进了医学图像细分的性能(Mediseg)。但是,最近的梅赛格出版物通常集中于主要贡献的演示(例如,网络体系结构,培训策略和损失功能),同时不知不觉地忽略了一些边缘实施细节(也称为“技巧”),导致了潜在的问题,导致了潜在的问题。不公平的实验结果比较。在本文中,我们为不同的模型实施阶段(即,预培训模型,数据预处理,数据增强,模型实施,模型推断和结果后处理)收集了一系列Mediseg技巧,并在实验中探索了有效性这些技巧在一致的基线模型上。与仅关注分割模型的优点和限制分析的纸驱动调查相比,我们的工作提供了大量的可靠实验,并且在技术上更可操作。通过对代表性2D和3D医疗图像数据集的广泛实验结果,我们明确阐明了这些技巧的效果。此外,根据调查的技巧,我们还开源了一个强大的梅德西格存储库,其每个组件都具有插件的优势。我们认为,这项里程碑的工作不仅完成了对最先进的Mediseg方法的全面和互补的调查,而且还提供了解决未来医学图像处理挑战的实用指南,包括但不限于小型数据集学习,课程不平衡学习,多模式学习和领域适应。该代码已在以下网址发布:https://github.com/hust-linyi/mediseg
translated by 谷歌翻译
自我监督的学习(SSL)通过大量未标记的数据的先知,在各种医学成像任务上取得了出色的性能。但是,对于特定的下游任务,仍然缺乏有关如何选择合适的借口任务和实现细节的指令书。在这项工作中,我们首先回顾了医学成像分析领域中自我监督方法的最新应用。然后,我们进行了广泛的实验,以探索SSL中的四个重要问题用于医学成像,包括(1)自我监督预处理对不平衡数据集的影响,(2)网络体系结构,(3)上游任务对下游任务和下游任务和下游任务的适用性(4)SSL和常用政策用于深度学习的堆叠效果,包括数据重新采样和增强。根据实验结果,提出了潜在的指南,以在医学成像中进行自我监督预处理。最后,我们讨论未来的研究方向并提出问题,以了解新的SSL方法和范式时要注意。
translated by 谷歌翻译
尽管近期基于深度学习的语义细分,但远程感测图像的自动建筑检测仍然是一个具有挑战性的问题,由于全球建筑物的出现巨大变化。误差主要发生在构建足迹的边界,阴影区域,以及检测外表面具有与周围区域非常相似的反射率特性的建筑物。为了克服这些问题,我们提出了一种生成的对抗基于网络的基于网络的分割框架,其具有嵌入在发电机中的不确定性关注单元和改进模块。由边缘和反向关注单元组成的细化模块,旨在精炼预测的建筑地图。边缘注意力增强了边界特征,以估计更高的精度,并且反向关注允许网络探索先前估计区域中缺少的功能。不确定性关注单元有助于网络解决分类中的不确定性。作为我们方法的权力的衡量标准,截至2021年12月4日,它在Deepglobe公共领导板上的第二名,尽管我们的方法的主要重点 - 建筑边缘 - 并不完全对齐用于排行榜排名的指标。 DeepGlobe充满挑战数据集的整体F1分数为0.745。我们还报告了对挑战的Inria验证数据集的最佳成绩,我们的网络实现了81.28%的总体验证,总体准确性为97.03%。沿着同一条线,对于官方Inria测试数据集,我们的网络总体上得分77.86%和96.41%,而且准确性。
translated by 谷歌翻译
视网膜脉管系统的研究是筛查和诊断许多疾病的基本阶段。完整的视网膜血管分析需要将视网膜的血管分为动脉和静脉(A/V)。早期自动方法在两个顺序阶段接近这些分割和分类任务。但是,目前,这些任务是作为联合语义分割任务处理的,因为分类结果在很大程度上取决于血管分割的有效性。在这方面,我们提出了一种新的方法,用于从眼睛眼睛图像中对视网膜A/V进行分割和分类。特别是,我们提出了一种新颖的方法,该方法与以前的方法不同,并且由于新的损失,将联合任务分解为针对动脉,静脉和整个血管树的三个分割问题。这种配置允许直观地处理容器交叉口,并直接提供不同靶血管树的精确分割罩。提供的关于公共视网膜图血管树提取(RITE)数据集的消融研究表明,所提出的方法提供了令人满意的性能,尤其是在不同结构的分割中。此外,与最新技术的比较表明,我们的方法在A/V分类中获得了高度竞争的结果,同时显着改善了血管分割。提出的多段方法允许检测更多的血管,并更好地分割不同的结构,同时实现竞争性分类性能。同样,用这些术语来说,我们的方法优于各种参考作品的方法。此外,与以前的方法相比,该方法允许直接检测到容器交叉口,并在这些复杂位置保留A/V的连续性。
translated by 谷歌翻译