黑盒优化在许多应用中具有潜力,例如在实验设计中的机器学习和优化中的超参数优化。 ISING机器对二进制优化问题很有用,因为变量可以由Ising机器的单个二进制变量表示。但是,使用ISING机器的常规方法无法处理具有非二进制值的黑框优化问题。为了克服这一限制,我们通过与三种不同的整数编码方法合作,通过使用ISING/退火计算机和分解计算机来提出一种用于整数变量的黑盒优化问题的方法。使用不同的编码方法,使用一个简单的问题来计算最稳定状态下的氢分子能量,以不同的编码方法进行数值评估。提出的方法可以使用任何整数编码方法来计算能量。但是,单次编码对于小尺寸的问题很有用。
translated by 谷歌翻译
在边缘计算中,抑制数据大小是执行复杂任务(例如自动驾驶)的机器学习模型的挑战,其中计算资源(速度,内存大小和功率)受到限制。通过将其分解为整数和真实矩阵的乘积,已经引入了矩阵数据的有效损耗压缩。但是,它的优化很困难,因为它需要同时优化整数和真实变量。在本文中,我们通过利用最近开发的黑盒优化(BBO)算法来改善这种优化,并具有用于整数变量的ISING求解器。此外,该算法可用于解决分别在真实和整数变量方面线性和非线性的混合成员编程问题。讨论了ISINS求解器的选择(模拟退火,量子退火和模拟淬火)与BBO算法(BOCS,FMQA及其变化)的策略之间的差异,以进一步开发BBO技术。
translated by 谷歌翻译
二次无约束的二进制优化(QUBO)求解器可以应用于设计最佳结构以避免共振。在经典或量子设备上使用的QUBO算法在某些工业应用中取得了成功。但是,由于难以从原始优化问题转变为QUBO,它们的应用仍受到限制。最近,已经提出了黑盒优化(BBO)方法,可以使用机器学习技术和贝叶斯治疗来解决此问题,以进行组合优化。我们采用了BBO方法来设计印刷电路板以避免共振。该设计问题是为了最大程度地提高固有频率并同时最大程度地减少安装点的数量。固有频率是QUBO公式的瓶颈,在BBO方法中近似于二次模型。我们证明,使用分解机的BBO在计算时间和找到最佳解决方案的成功概率中都表现出良好的性能。我们的结果可以打开Qubo求解器在结构设计中的其他应用的潜力。
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
组合优化问题可以通过启发式算法(例如模拟退火(SA))来解决,该算法旨在通过热搜索空间在大型搜索空间中找到全局最小值溶液。该算法通过马尔可夫链蒙特卡洛技术生成新的解决方案。后者可能会导致严重的局限性,例如缓慢的收敛性和在较小温度下保持在同一局部搜索空间内的趋势。为了克服这些缺点,我们使用了变异经典退火(VCA)框架,该框架将自回归复发性神经网络(RNN)与传统退火相结合来彼此独立于样品解决方案。在本文中,我们证明了使用VCA作为解决现实世界优化问题的方法的潜力。与SA相比,我们探索了VCA的性能,以解决三个流行的优化问题:最大切割问题(最大切割),护士调度问题(NSP)和旅行推销员问题(TSP)。对于所有三个问题,我们发现VCA在渐近极限中的平均表现要优于SA。有趣的是,我们达到了TSP最高可达256美元的城市的大型系统尺寸。我们得出的结论是,在最佳情况下,当SA无法找到最佳解决方案时,VCA可以作为一个很好的选择。
translated by 谷歌翻译
我们解决了与行业相关的尺度上的机器人轨迹计划问题。我们的端到端解决方案将高度通用的随机键算法与模型堆叠和集成技术集成在一起,以及用于溶液细化的路径重新链接。核心优化模块由偏置的随机基遗传算法组成。通过与问题依赖性和问题相关模块的独特分离,我们通过约束的天然编码实现了有效的问题表示。我们表明,对替代算法范式(例如模拟退火)的概括是直接的。我们为行业规模的数据集提供数值基准结果。发现我们的方法始终超过贪婪的基线结果。为了评估当今量子硬件的功能,我们使用Amazon Braket上的QBSOLV在量子退火硬件上获得的经典方法进行了补充。最后,我们展示了如何将后者集成到我们的较大管道中,从而为问题提供了量子准备的混合解决方案。
translated by 谷歌翻译
距离措施为机器学习和模式识别中的许多流行算法提供了基础。根据算法正在处理的数据类型,可以使用不同的距离概念。对于图形数据,重要概念是图表编辑距离(GED),从而在使它们相同所需的操作方面测量两个图之间的两个图之间的相似度。由于计算GED的复杂性与NP难题相同,因此考虑近似解决方案是合理的。在本文中,我们向计算GED的两个量子方法的比较研究:量子退火和变分量子算法,其分别是指当前可用的两种类型的量子硬件,即量子退火器和基于栅极的量子计算机。考虑到当前嘈杂的中间级量子计算机的状态,我们基于这些量子算法性能的原理上的原理测试研究。
translated by 谷歌翻译
优化在离散变量上的高度复杂的成本/能源功能是不同科学学科和行业的许多公开问题的核心。一个主要障碍是在硬实例中的某些变量子集之间的出现,导致临界减慢或集体冻结了已知的随机本地搜索策略。通常需要指数计算工作来解冻这种变量,并探索配置空间的其他看不见的区域。在这里,我们通过开发自适应梯度的策略来介绍一个量子启发的非本球非识别蒙特卡罗(NMC)算法,可以有效地学习成本函数的关键实例的几何特征。该信息随行使用,以构造空间不均匀的热波动,用于以各种长度尺度集体未填充变量,规避昂贵的勘探与开发权衡。我们将算法应用于两个最具挑战性的组合优化问题:随机k可满足(K-SAT)附近计算阶段转换和二次分配问题(QAP)。我们在专业的确定性求解器和通用随机求解器上观察到显着的加速和鲁棒性。特别是,对于90%的随机4-SAT实例,我们发现了最佳专用确定性算法无法访问的解决方案,该算法(SP)具有最强的10%实例的解决方案质量的大小提高。我们还通过最先进的通用随机求解器(APT)显示出在最先进的通用随机求解器(APT)上的时间到溶液的两个数量级改善。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
我们将数字化量子退火(QA)和量子近似优化算法(QAOA)应用于人工神经网络中监督学习的范式任务:二元切割的突触权优化。在与MaxCut常用的Qoaa应用程序方差,或对Quantum Spin-Chains接地状态准备,经典Hamiltonian的特征在于高度非局部多自旋相互作用。然而,我们为QAOA参数提供最佳顺利解决的证据,这些参数可在同一问题的典型实例之间转移,并且我们证明了Qaoa在传统Qa上的增强性能。我们还研究了QAOA优化景观几何形状在这个问题中的作用,表明QA中遇到的间隙闭合转变的不利影响也对我们实施QAOA实施的表现负面影响。
translated by 谷歌翻译
变异贝叶斯(VB)推理算法被广泛用于估计生成统计模型中的参数和未观察到的隐藏变量。该算法是受计算物理学中使用的变异方法的启发的 - 即使使用经典技术(例如确定性退火(DA)),也可以轻松地卡在本地最小值中。我们研究了基于非传统量子退火方法的变异贝叶斯(VB)推理算法 - 称为量子退火变异贝叶斯(QAVB)推断 - 并表明QAVB比其经典对应物具有量子优势。特别是,我们表明这种更好的性能源于量子力学的关键概念:(i)量子系统的哈密顿量的基态 - 定义从给定的变分贝叶斯(VB)问题定义 - 对应于最佳解决方案对于在非常低的温度下的变异自由能的最小化问题; (ii)通过与量子退火过程平行的技术可以实现这种基态; (iii)从这种基态开始,可以通过将热浴温度提高到统一性来实现VB问题的最佳解决方案,从而避免在基于古典物理学的VB算法中观察到的自发对称性破坏引入的局部最小值。我们还显示,可以使用$ \ lceil \ log k \ rceil $ Qubits和$ \ Mathcal {O}(k)$操作每个步骤来实现QAVB的更新方程。因此,QAVB可以匹配现有VB算法的时间复杂性,同时提供更高的性能。
translated by 谷歌翻译
量子状态的神经网络表示的变异优化已成功地用于解决相互作用的费米子问题。尽管发展迅速,但在考虑大规模分子时会出现重大的可伸缩性挑战,这些分子与非局部相互作用的量子自旋汉密尔顿人相对应,这些量子旋转汉密尔顿人由数千甚至数百万的保利操作员组成。在这项工作中,我们引入了可扩展的并行化策略,以改善基于神经网络的量子量蒙特卡洛计算,用于AB-Initio量子化学应用。我们建立了由GPU支持的局部能量并行性,以计算潜在复杂分子的哈密顿量的优化目标。使用自回旋抽样技术,我们证明了实现CCSD基线目标能量所需的壁锁定时间的系统改进。通过将最终的旋转汉顿量的结构适应自回归抽样顺序,进一步提高了性能。与经典的近似方法相比,该算法实现了有希望的性能,并且比现有基于神经网络的方法具有运行时间和可伸缩性优势。
translated by 谷歌翻译
我们利用量子退火器的有效二进制优化能力提出了晶格QCD数据的回归和压缩算法。在回归算法中,我们将输入和输出变量与稀疏编码机学习算法中的相关性进行编码。训练有素的相关模式用于预测来自在晶格上测量的其他可观察到的看不见的晶格配置的晶格QCD可观察。在压缩算法中,我们将浮点数的晶格QCD数据定义到与来自一组基向量重建输入数据的二进制系数的映射。由于重建不是精确的,因此映射定义了有损压缩,但是,相当少量的二进制系数能够重建晶格QCD数据的输入向量向量与重建误差小于统计波动的重建误差。在这两个应用中,我们使用D波量子退火器来解决机器学习算法的NP硬二元优化问题。
translated by 谷歌翻译
近年来,设计用于量子计算机或其他专业硬件的优化算法引起了研究的兴趣。这些求解器中的许多只能优化二进制和二次形式的问题。因此,二次不受约束的二进制优化(QUBO)是这些求解器使用的常见公式。有许多组合优化问题自然表示为排列,例如旅行推销员问题。但是,使用二进制变量编码置换问题,但是提出了一些挑战。许多QUBO求解器是单个翻转求解器,因此可以生成无法解码为有效置换的解决方案。为了产生产生可行解决方案的偏见,我们使用惩罚权重。为各种类型问题设定静态罚重的过程并不是微不足道的。这是因为太小的值会导致求解器返回不可行的解决方案,而太大的值可能会导致收敛速度较慢。在这项研究中,我们探讨了在QUBO配方中设置惩罚权重的一些方法。我们提出了新的静态方法来计算惩罚权重,这比现有方法更有希望的结果。
translated by 谷歌翻译
Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.
translated by 谷歌翻译
Hamiltonian学习是量子系统识别,校准和量子计算机成功运行的重要程序。通过对量子系统的查询,该过程寻求获得给定Hamiltonian模型的参数和噪声源的描述。汉密尔顿学习的标准技术需要仔细设计查询和$ O(\ epsilon ^ {-2})$查询,以获得由于标准量子限制而实现学习错误$ \ epsilon $。通过实现学习错误$ \ epsilon $ \ opsilon $的有效和准确地估计Hamiltonian参数,我们介绍了一个活跃的学习者,它给出了一个初始的训练示例和交互式查询量子系统以产生新的培训数据的能力。我们正式指定和实验地评估该汉密尔顿主动学习(HAL)算法的性能,用于学习四个不同超导IBM量子器件上的双态交叉谐振Hamiltonian的六个参数。与同一问题的标准技术和指定的学习错误相比,HAL可以在相当的非自适应学习算法上实现高达99.8 \%$ 99.1 \%$ 49.1%。此外,通过访问汉密尔顿参数的子集的先前信息,并提供了在学习期间用线性(或指数)的较长系统交互时间选择查询的能力,Hal可以超过标准量子限制,实现Heisenberg(或超级Heisenberg)有限公司学习期间的收敛速度。
translated by 谷歌翻译
支持向量回归(SVR)的古典机器学习模型(SVR)广泛用于回归任务,包括天气预报,股票市场和房地产定价。但是,SVR的实际可实现的量子版本仍有待配制。我们设计了基于退火的算法,即模拟和量子古典的混合动力车,用于训练两个SVR模型,并比较他们对Python Scikit-Greats包的SVR实现和基于SVR的最新算法的实证性能面部地标检测(FLD)问题。我们的方法是为训练SVR模型的优化问题推导出二次非判断 - 二进制制定,并使用退火解决这个问题。使用D-Wave的混合求解器,我们构建了一项量子辅助的SVR模型,从而展示了关于地标检测精度的古典模型的略有优势。此外,我们观察到基于退火的SVR模型预测与通过贪婪优化程序训练的SVR模型相比具有较低差异的地标。我们的工作是一个概念验证示例,用于使用小型训练数据集将量化的SVR应用于监督的学习任务。
translated by 谷歌翻译
在多种重要应用中,获得电子系统的准确地面和低洼激发态至关重要。一种用于求解对大型系统缩放的Schr \“ Odinger方程的方法是变异量蒙特卡洛(QMC)。最近引入的深层QMC方法使用以深神经网络代表的Ansatzes,并生成几乎精确的分子解决方案的分子解决方案最多包含几十个电子,并有可能扩展到更大的系统,而其他高度准确的方法不可行。在本文中,我们扩展了一个这样的Ansatz(Paulinet)来计算电子激发态。我们在各种方法上演示了我们的方法小原子和分子,并始终达到低洼状态的高精度。为了突出该方法的潜力,我们计算了较大的苯分子的第一个激发态,以及乙烯的圆锥形交集,Paulinet匹配的结果更昂贵高级方法。
translated by 谷歌翻译
神经网络和量子蒙特卡罗方法的组合作为前进的高精度电子结构计算的道路出现。以前的建议具有组合具有反对称层的增强的神经网络层,以满足电子波技的反对称要求。但是,迄今为止,如果可以代表物理兴趣的反对称功能,则不清楚尚不清楚,并且难以测量反对称层的富有效果。这项工作通过将明确的防视通用神经网络层作为诊断工具引入明确的防视通用神经网络层来解决这个问题。我们首先介绍一种通用的反对二手(GA)层,我们用于更换称为FEMINET的高精度ANSATZ的整个防反对二层层。我们证明所得到的FERMINET-GA架构可以有效地产生小型系统的确切地位能量。然后,我们考虑一种分解的反对称(FA)层,其通过替换具有反对称神经网络的产品的决定因素的产品更易于推广FERMINET。有趣的是,由此产生的FERMINET-FA架构并不优于FERMINET。这表明抗体产品的总和是Ferminet架构的关键限制方面。为了进一步探索这一点,我们研究了称为全决定性模式的FERMINET的微小修改,其用单一组合的决定蛋白取代了决定因素的每个产物。完整的单决定性Ferminet封闭标准单决定性Ferminet和Ferminet-Ga之间的大部分间隙。令人惊讶的是,在4.0 BoHR的解离键长度的氮素分子上,全单决定性Ferminet可以显着优于标准的64个决定性Ferminet,从而在0.4千卡/摩尔中获得最佳可用计算基准的能量。
translated by 谷歌翻译