This short study reformulates the statistical Bayesian learning problem using a quantum mechanics framework. Density operators representing ensembles of pure states of sample wave functions are used in place probability densities. We show that such representation allows to formulate the statistical Bayesian learning problem in different coordinate systems on the sample space. We further show that such representation allows to learn projections of density operators using a kernel trick. In particular, the study highlights that decomposing wave functions rather than probability densities, as it is done in kernel embedding, allows to preserve the nature of probability operators. Results are illustrated with a simple example using discrete orthogonal wavelet transform of density operators.
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译
我们介绍了革兰氏 - 哈达马德密度运算符(GHDO),这是一种新的深神经网络结构,可以用多项式资源编码指数级的正差半准密度运算符。然后,我们展示如何在GHDO中嵌入自回归结构,以直接对概率分布进行采样。当表示与环境相互作用的系统的混合量子状态时,这些属性尤为重要。最后,我们通过模拟耗散横向场模型的稳态来对此结构进行基准测试。估计局部可观察物和r \'enyi熵,我们对先前最新的变异方法显示出显着改善。
translated by 谷歌翻译
已经假设量子计算机可以很好地为机器学习中的应用提供很好。在本作工作中,我们分析通过量子内核定义的函数类。量子计算机提供了有效地计算符合难以计算的指数大密度运算符的内部产品。然而,具有指数大的特征空间使得普遍化的问题造成泛化的问题。此外,能够有效地评估高尺寸空间中的内部产品本身不能保证量子优势,因为已经是经典的漫步核可以对应于高或无限的维度再现核Hilbert空间(RKHS)。我们分析量子内核的频谱属性,并发现我们可以期待优势如果其RKHS低维度,并且包含很难经典计算的功能。如果已知目标函数位于该类中,则这意味着量子优势,因为量子计算机可以编码这种电感偏压,而没有同样的方式对功能类进行经典有效的方式。但是,我们表明查找合适的量子内核并不容易,因为内核评估可能需要指数倍数的测量。总之,我们的信息是有点令人发声的:我们猜测量子机器学习模型只有在我们设法将关于传递到量子电路的问题的知识编码的情况下,才能提供加速,同时将相同的偏差置于经典模型。难的。然而,在学习由量子流程生成的数据时,这些情况可能会被典雅地发生,但对于古典数据集来说,它们似乎更难。
translated by 谷歌翻译
变分贝叶斯推断是一个重要的机器学习工具,可从统计数据中找到应用到机器人技术。目的是从所选家族中找到一个近似概率密度函数(PDF),从某种意义上说,它最接近贝叶斯后部。接近度通常是通过选择适当的损失功能(例如Kullback-Leibler(KL)差异)来定义的。在本文中,我们通过利用(大多数)PDF是贝叶斯希尔伯特空间的成员,在仔细定义矢量添加,标量乘法和内部产品的情况下,探讨了变异推断的新表述。我们表明,在适当的条件下,基于KL差异的变异推断可以等于迭代性投影,从欧几里得意义上讲,贝叶斯后部到对应于所选近似族的子空间上。我们通过此通用框架的细节为高斯近似家族的特定情况进行了努力,并显示了与另一种高斯变异推理方法的等效性。此外,我们讨论了表现出稀疏性的系统的含义,该系统在贝叶斯空间中自然处理,并给出了一个高维机器人状态估计问题的示例,因此可以解决。我们提供了一些初步示例,说明如何将方法应用于非高斯推论,并详细讨论该方法的局限性,以鼓励沿着这些路线进行跟进。
translated by 谷歌翻译
内核方法是机器学习中最流行的技术之一,使用再现内核希尔伯特空间(RKHS)的属性来解决学习任务。在本文中,我们提出了一种新的数据分析框架,与再现内核Hilbert $ C ^ * $ - 模块(rkhm)和rkhm中的内核嵌入(kme)。由于RKHM包含比RKHS或VVRKHS)的更丰富的信息,因此使用RKHM的分析使我们能够捕获和提取诸如功能数据的结构属性。我们向RKHM展示了rkhm理论的分支,以适用于数据分析,包括代表性定理,以及所提出的KME的注射性和普遍性。我们还显示RKHM概括RKHS和VVRKHS。然后,我们提供采用RKHM和提议的KME对数据分析的具体程序。
translated by 谷歌翻译
Efficient characterization of highly entangled multi-particle systems is an outstanding challenge in quantum science. Recent developments have shown that a modest number of randomized measurements suffices to learn many properties of a quantum many-body system. However, implementing such measurements requires complete control over individual particles, which is unavailable in many experimental platforms. In this work, we present rigorous and efficient algorithms for learning quantum many-body states in systems with any degree of control over individual particles, including when every particle is subject to the same global field and no additional ancilla particles are available. We numerically demonstrate the effectiveness of our algorithms for estimating energy densities in a U(1) lattice gauge theory and classifying topological order using very limited measurement capabilities.
translated by 谷歌翻译
十年自2010年以来,人工智能成功一直处于计算机科学和技术的最前沿,传染媒介空间模型已经巩固了人工智能最前沿的位置。与此同时,量子计算机已经变得更加强大,主要进步的公告经常在新闻中。这些区域的基础的数学技术比有时意识到更多的共同之处。传染媒介空间在20世纪30年代的量子力学的公理心脏上采取了位置,这一采用是从矢量空间的线性几何形状推导逻辑和概率的关键动机。粒子之间的量子相互作用是使用张量产品进行建模的,其也用于表达人工神经网络中的物体和操作。本文介绍了这些常见的数学区域中的一些,包括如何在人工智能(AI)中使用的示例,特别是在自动推理和自然语言处理(NLP)中。讨论的技术包括矢量空间,标量产品,子空间和含义,正交投影和否定,双向矩阵,密度矩阵,正算子和张量产品。应用领域包括信息检索,分类和含义,建模字传感和歧义,知识库的推断和语义构成。其中一些方法可能会在量子硬件上实现。该实施中的许多实际步骤都处于早期阶段,其中一些已经实现了。解释一些常见的数学工具可以帮助AI和量子计算中的研究人员进一步利用这些重叠,识别和沿途探索新方向。
translated by 谷歌翻译
内核Stein差异(KSD)是一种基于内核的广泛使用概率指标之间差异的非参数量度。它通常在用户从候选概率度量中收集的样本集合的情况下使用,并希望将它们与指定的目标概率度量进行比较。 KSD的一个有用属性是,它可以仅从候选度量的样本中计算出来,并且不知道目标度量的正常化常数。 KSD已用于一系列设置,包括合适的测试,参数推断,MCMC输出评估和生成建模。当前KSD方法论的两个主要问题是(i)超出有限维度欧几里得环境之外的适用性以及(ii)缺乏影响KSD性能的清晰度。本文提供了KSD的新频谱表示,这两种补救措施都使KSD适用于希尔伯特(Hilbert)评估数据,并揭示了内核和Stein oterator Choice对KSD的影响。我们通过在许多合成数据实验中对各种高斯和非高斯功能模型进行拟合优度测试来证明所提出的方法的功效。
translated by 谷歌翻译
这项工作起源于观察到,今天的最先进的统计语言模型不仅符合他们的性能,而且非常重要 - 因为它们完全从非结构化文本数据中的相关性建立。后一种观察会提示一个基本的问题在于本文的核心:非结构化文本数据中存在的数学结构是什么?我们提出了丰富的类别理论作为自然答案。我们展示了来自有限字母表的符号序列,例如在文本语料库中发现的那些,形成富含概率的类别。然后,我们解决了第二个基本问题:如何以保留分类结构的方式存储和建模此信息?我们通过从我们丰富的文本类别构建一个归力来回答这一点,以对特定的丰富的密度运营商类别。后者利用了积极的Semidefinite运算符上的Loewner订单,这可以进一步解释为一个有关的玩具例子。
translated by 谷歌翻译
提出了用于基于合奏的估计和模拟高维动力系统(例如海洋或大气流)的方法学框架。为此,动态系统嵌入了一个由动力学驱动的内核功能的繁殖核Hilbert空间的家族中。这个家庭因其吸引人的财产而被昵称为仙境。在梦游仙境中,Koopman和Perron-Frobenius操作员是统一且均匀的。该属性保证它们可以在一系列可对角线的无限发电机中表达。访问Lyapunov指数和切线线性动力学的精确集合表达式也可以直接可用。仙境使我们能够根据轨迹样本的恒定时间线性组合来设计出惊人的简单集合数据同化方法。通过几个基本定理的完全合理的叠加原则,使这种令人尴尬的简单策略成为可能。
translated by 谷歌翻译
高斯过程可以说是空间统计中最重要的模型类别。他们编码有关建模功能的先前信息,可用于精确或近似贝叶斯推断。在许多应用中,尤其是在物理科学和工程中,以及在诸如地统计和神经科学等领域,对对称性的不变性是人们可以考虑的先前信息的最基本形式之一。高斯工艺与这种对称性的协方差的不变性导致了对此类空间平稳性概念的最自然概括。在这项工作中,我们开发了建设性和实用的技术,用于在在对称的背景下产生的一大批非欧基人空间上构建固定的高斯工艺。我们的技术使(i)以实用的方式计算(i)计算在此类空间上定义的先验和后高斯过程中的协方差内核和(ii)。这项工作分为两部分,每个部分涉及不同的技术考虑:第一部分研究紧凑的空间,而第二部分研究的非紧密空间具有某些结构。我们的贡献使我们研究的非欧亚人高斯流程模型与标准高斯流程软件包中可用的良好计算技术兼容,从而使从业者可以访问它们。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
已知量子计算机可以在某些专业设置中使用经典的最先进的机器学习方法提供加速。例如,已证明量子内核方法可以在离散对数问题的学习版本上提供指数加速。了解量子模型的概括对于实现实际利益问题的类似加速至关重要。最近的结果表明,量子特征空间的指数大小阻碍了概括。尽管这些结果表明,量子模型在量子数数量较大时无法概括,但在本文中,我们表明这些结果依赖于过度限制性的假设。我们通过改变称为量子内核带宽的超参数来考虑更广泛的模型。我们分析了大量限制,并为可以以封闭形式求解的量子模型的概括提供了明确的公式。具体而言,我们表明,更改带宽的值可以使模型从不能概括到任何目标函数到对准目标的良好概括。我们的分析表明,带宽如何控制内核积分操作员的光谱,从而如何控制模型的电感偏置。我们从经验上证明,我们的理论正确地预测带宽如何影响质量模型在具有挑战性的数据集上的概括,包括远远超出我们理论假设的数据集。我们讨论了结果对机器学习中量子优势的含义。
translated by 谷歌翻译
量子贝叶斯AI(Q-B)是一个新兴领域,可杠杆计算中可用的计算收益。承诺是许多贝叶斯算法中的指数加速。我们的目标是将这些方法直接应用于统计和机器学习问题。我们提供了经典和量子概率之间的二元性,以计算后验量的利益。我们的框架从冯·诺伊曼(Von Neumann)的量子测量原理中的角度统一了MCMC,深度学习和量子学习计算。量子嵌入和神经门也是数据编码和特征选择的重要组成部分。在统计学习中,具有众所周知的内核方法具有自然性。我们说明了两种简单分类算法上量子算法的行为。最后,我们以未来研究的指示得出结论。
translated by 谷歌翻译
We consider autocovariance operators of a stationary stochastic process on a Polish space that is embedded into a reproducing kernel Hilbert space. We investigate how empirical estimates of these operators converge along realizations of the process under various conditions. In particular, we examine ergodic and strongly mixing processes and obtain several asymptotic results as well as finite sample error bounds. We provide applications of our theory in terms of consistency results for kernel PCA with dependent data and the conditional mean embedding of transition probabilities. Finally, we use our approach to examine the nonparametric estimation of Markov transition operators and highlight how our theory can give a consistency analysis for a large family of spectral analysis methods including kernel-based dynamic mode decomposition.
translated by 谷歌翻译
密度矩阵描述了量子系统的统计状态。它是一种强大的形式主义,代表量子系统的量子和经典不确定性,并表达不同的统计操作,例如测量,系统组合和期望作为线性代数操作。本文探讨了密度矩阵如何用作构建块,以构建机器学习模型,利用它们直接组合线性代数和概率的能力。本文的主要结果之一是表示与随机傅里叶功能耦合的密度矩阵可以近似任意概率分布超过$ \ mathbb {r} ^ n $。基于此发现,该纸张为密度估计,分类和回归构建了不同的模型。这些模型是可疑的,因此可以将它们与其他可分辨率的组件(例如深度学习架构)集成,并使用基于梯度的优化来学习其参数。此外,本文提出了基于估计和模型平均的优化培训策略。该模型在基准任务中进行评估,并报告并讨论结果。
translated by 谷歌翻译
我们考虑通过复制内核希尔伯特空间的相关协方差操作员对概率分布进行分析。我们表明,冯·诺伊曼(Von Neumann)的熵和这些操作员的相对熵与香农熵和相对熵的通常概念密切相关,并具有许多特性。它们与来自概率分布的各种口径的有效估计算法结合在一起。我们还考虑了产品空间,并表明对于张量产品内核,我们可以定义互信息和联合熵的概念,然后可以完美地表征独立性,但只能部分条件独立。我们最终展示了这些新的相对熵概念如何导致对数分区函数的新上限,这些函数可以与变异推理方法中的凸优化一起使用,从而提供了新的概率推理方法家族。
translated by 谷歌翻译
The basic idea of quantum computing is surprisingly similar to that of kernel methods in machine learning, namely to efficiently perform computations in an intractably large Hilbert space. In this paper we explore some theoretical foundations of this link and show how it opens up a new avenue for the design of quantum machine learning algorithms. We interpret the process of encoding inputs in a quantum state as a nonlinear feature map that maps data to quantum Hilbert space. A quantum computer can now analyse the input data in this feature space. Based on this link, we discuss two approaches for building a quantum model for classification. In the first approach, the quantum device estimates inner products of quantum states to compute a classically intractable kernel. This kernel can be fed into any classical kernel method such as a support vector machine. In the second approach, we can use a variational quantum circuit as a linear model that classifies data explicitly in Hilbert space. We illustrate these ideas with a feature map based on squeezing in a continuous-variable system, and visualise the working principle with 2-dimensional mini-benchmark datasets.
translated by 谷歌翻译