提出了用于基于合奏的估计和模拟高维动力系统(例如海洋或大气流)的方法学框架。为此,动态系统嵌入了一个由动力学驱动的内核功能的繁殖核Hilbert空间的家族中。这个家庭因其吸引人的财产而被昵称为仙境。在梦游仙境中,Koopman和Perron-Frobenius操作员是统一且均匀的。该属性保证它们可以在一系列可对角线的无限发电机中表达。访问Lyapunov指数和切线线性动力学的精确集合表达式也可以直接可用。仙境使我们能够根据轨迹样本的恒定时间线性组合来设计出惊人的简单集合数据同化方法。通过几个基本定理的完全合理的叠加原则,使这种令人尴尬的简单策略成为可能。
translated by 谷歌翻译
Koopman运算符是无限维的运算符,可全球线性化非线性动态系统,使其光谱信息可用于理解动态。然而,Koopman运算符可以具有连续的光谱和无限维度的子空间,使得它们的光谱信息提供相当大的挑战。本文介绍了具有严格融合的数据驱动算法,用于从轨迹数据计算Koopman运算符的频谱信息。我们引入了残余动态模式分解(ResDMD),它提供了第一种用于计算普通Koopman运算符的Spectra和PseudtoStra的第一种方案,无需光谱污染。使用解析器操作员和RESDMD,我们还计算与测量保存动态系统相关的光谱度量的平滑近似。我们证明了我们的算法的显式收敛定理,即使计算连续频谱和离散频谱的密度,也可以实现高阶收敛即使是混沌系统。我们展示了在帐篷地图,高斯迭代地图,非线性摆,双摆,洛伦茨系统和11美元延长洛伦兹系统的算法。最后,我们为具有高维状态空间的动态系统提供了我们的算法的核化变体。这使我们能够计算与具有20,046维状态空间的蛋白质分子的动态相关的光谱度量,并计算出湍流流过空气的误差界限的非线性Koopman模式,其具有雷诺数为$> 10 ^ 5 $。一个295,122维的状态空间。
translated by 谷歌翻译
We study a class of dynamical systems modelled as Markov chains that admit an invariant distribution via the corresponding transfer, or Koopman, operator. While data-driven algorithms to reconstruct such operators are well known, their relationship with statistical learning is largely unexplored. We formalize a framework to learn the Koopman operator from finite data trajectories of the dynamical system. We consider the restriction of this operator to a reproducing kernel Hilbert space and introduce a notion of risk, from which different estimators naturally arise. We link the risk with the estimation of the spectral decomposition of the Koopman operator. These observations motivate a reduced-rank operator regression (RRR) estimator. We derive learning bounds for the proposed estimator, holding both in i.i.d. and non i.i.d. settings, the latter in terms of mixing coefficients. Our results suggest RRR might be beneficial over other widely used estimators as confirmed in numerical experiments both for forecasting and mode decomposition.
translated by 谷歌翻译
内核方法是机器学习中最流行的技术之一,使用再现内核希尔伯特空间(RKHS)的属性来解决学习任务。在本文中,我们提出了一种新的数据分析框架,与再现内核Hilbert $ C ^ * $ - 模块(rkhm)和rkhm中的内核嵌入(kme)。由于RKHM包含比RKHS或VVRKHS)的更丰富的信息,因此使用RKHM的分析使我们能够捕获和提取诸如功能数据的结构属性。我们向RKHM展示了rkhm理论的分支,以适用于数据分析,包括代表性定理,以及所提出的KME的注射性和普遍性。我们还显示RKHM概括RKHS和VVRKHS。然后,我们提供采用RKHM和提议的KME对数据分析的具体程序。
translated by 谷歌翻译
We consider autocovariance operators of a stationary stochastic process on a Polish space that is embedded into a reproducing kernel Hilbert space. We investigate how empirical estimates of these operators converge along realizations of the process under various conditions. In particular, we examine ergodic and strongly mixing processes and obtain several asymptotic results as well as finite sample error bounds. We provide applications of our theory in terms of consistency results for kernel PCA with dependent data and the conditional mean embedding of transition probabilities. Finally, we use our approach to examine the nonparametric estimation of Markov transition operators and highlight how our theory can give a consistency analysis for a large family of spectral analysis methods including kernel-based dynamic mode decomposition.
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
内核Stein差异(KSD)是一种基于内核的广泛使用概率指标之间差异的非参数量度。它通常在用户从候选概率度量中收集的样本集合的情况下使用,并希望将它们与指定的目标概率度量进行比较。 KSD的一个有用属性是,它可以仅从候选度量的样本中计算出来,并且不知道目标度量的正常化常数。 KSD已用于一系列设置,包括合适的测试,参数推断,MCMC输出评估和生成建模。当前KSD方法论的两个主要问题是(i)超出有限维度欧几里得环境之外的适用性以及(ii)缺乏影响KSD性能的清晰度。本文提供了KSD的新频谱表示,这两种补救措施都使KSD适用于希尔伯特(Hilbert)评估数据,并揭示了内核和Stein oterator Choice对KSD的影响。我们通过在许多合成数据实验中对各种高斯和非高斯功能模型进行拟合优度测试来证明所提出的方法的功效。
translated by 谷歌翻译
非线性自适应控制理论中的一个关键假设是系统的不确定性可以在一组已知基本函数的线性跨度中表示。虽然该假设导致有效的算法,但它将应用限制为非常特定的系统类别。我们介绍一种新的非参数自适应算法,其在参数上学习无限尺寸密度,以取消再现内核希尔伯特空间中的未知干扰。令人惊讶的是,所产生的控制输入承认,尽管其底层无限尺寸结构,但是尽管它的潜在无限尺寸结构实现了其实施的分析表达。虽然这种自适应输入具有丰富和富有敏感性的 - 例如,传统的线性参数化 - 其计算复杂性随时间线性增长,使其比其参数对应力相对较高。利用随机傅里叶特征的理论,我们提供了一种有效的随机实现,该实现恢复了经典参数方法的复杂性,同时可透明地保留非参数输入的表征性。特别地,我们的显式范围仅取决于系统的基础参数,允许我们所提出的算法有效地缩放到高维系统。作为该方法的说明,我们展示了随机近似算法学习由牛顿重力交互的十点批量组成的60维系统的预测模型的能力。
translated by 谷歌翻译
我们合并计算力学的因果状态(预测等同历史)的定义与再现 - 内核希尔伯特空间(RKHS)表示推断。结果是一种广泛适用的方法,可直接从系统行为的观察中迁移因果结构,无论它们是否超过离散或连续事件或时间。结构表示 - 有限或无限状态内核$ \ epsilon $ -Machine - 由减压变换提取,其提供了有效的因果状态及其拓扑。以这种方式,系统动态由用于在因果状态上的随机(普通或部分)微分方程表示。我们介绍了一种算法来估计相关的演化运营商。平行于Fokker-Plank方程,它有效地发展了因果状态分布,并通过RKHS功能映射在原始数据空间中进行预测。我们展示了这些技术,以及他们的预测能力,在离散时间的离散时间离散 - 有限的无限值Markov订单流程,其中有限状态隐藏马尔可夫模型与(i)有限或(ii)不可数 - 无限因果态和(iii)连续时间,由热驱动的混沌流产生的连续值处理。该方法在存在不同的外部和测量噪声水平和非常高的维数据存在下鲁棒地估计因果结构。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
显示了最佳的收敛速率,显示了对保守随机偏微分方程的平均场限制对解决方案解决方案解决方案解决方案的收敛。作为第二个主要结果,该SPDE的定量中心极限定理再次得出,并以最佳的收敛速率得出。该结果尤其适用于在过叠层化的,浅的神经网络中与SPDES溶液中随机梯度下降动力学的平均场缩放率的收敛性。结果表明,在限制SPDE中包含波动可以提高收敛速度,并保留有关随机梯度下降的波动的信息。
translated by 谷歌翻译
Experimental sciences have come to depend heavily on our ability to organize, interpret and analyze high-dimensional datasets produced from observations of a large number of variables governed by natural processes. Natural laws, conservation principles, and dynamical structure introduce intricate inter-dependencies among these observed variables, which in turn yield geometric structure, with fewer degrees of freedom, on the dataset. We show how fine-scale features of this structure in data can be extracted from \emph{discrete} approximations to quantum mechanical processes given by data-driven graph Laplacians and localized wavepackets. This data-driven quantization procedure leads to a novel, yet natural uncertainty principle for data analysis induced by limited data. We illustrate the new approach with algorithms and several applications to real-world data, including the learning of patterns and anomalies in social distancing and mobility behavior during the COVID-19 pandemic.
translated by 谷歌翻译
Kernels are efficient in representing nonlocal dependence and they are widely used to design operators between function spaces. Thus, learning kernels in operators from data is an inverse problem of general interest. Due to the nonlocal dependence, the inverse problem can be severely ill-posed with a data-dependent singular inversion operator. The Bayesian approach overcomes the ill-posedness through a non-degenerate prior. However, a fixed non-degenerate prior leads to a divergent posterior mean when the observation noise becomes small, if the data induces a perturbation in the eigenspace of zero eigenvalues of the inversion operator. We introduce a data-adaptive prior to achieve a stable posterior whose mean always has a small noise limit. The data-adaptive prior's covariance is the inversion operator with a hyper-parameter selected adaptive to data by the L-curve method. Furthermore, we provide a detailed analysis on the computational practice of the data-adaptive prior, and demonstrate it on Toeplitz matrices and integral operators. Numerical tests show that a fixed prior can lead to a divergent posterior mean in the presence of any of the four types of errors: discretization error, model error, partial observation and wrong noise assumption. In contrast, the data-adaptive prior always attains posterior means with small noise limits.
translated by 谷歌翻译
Koopman运算符全球线性化非线性动力学系统及其光谱信息是分析和分解非线性动力学系统的强大工具。但是,Koopman运营商是无限维度的,计算其光谱信息是一个巨大的挑战。我们介绍了Measure-tearving扩展动态模式分解($ \ texttt {mpedmd} $),这是第一种截断方法,其特征性组件收敛到koopman运算符的光谱,以用于一般测量的动态系统。 $ \ texttt {mpedmd} $是基于正交式procrustes问题的数据驱动算法,该问题使用可观察的一般字典来强制测量Koopman运算符的截断。它具有灵活性且易于使用的任何预先存在的DMD类型方法,并且具有不同类型的数据。我们证明了$ \ texttt {mpedmd} $的融合,用于投影值和标量值光谱测量,光谱和koopman模式分解。对于延迟嵌入(Krylov子空间)的情况,我们的结果包括随着字典的大小增加,光谱测量近似值的第一个收敛速率。我们在一系列具有挑战性的示例中演示了$ \ texttt {mpedmd} $,与其他DMD型方法相比,其对噪声的稳健性提高,以及其捕获湍流边界层实验测量的能源保存和级联反应的能力,并以Reynolds的方式流动。数字$> 6 \ times 10^4 $和状态空间尺寸$> 10^5 $。
translated by 谷歌翻译
数据驱动的降级模型通常无法对沿坐标敏感的高维非线性系统进行准确的预测,因为这种坐标通常经常被截断,例如,通过正确的正交分解,核心成分分析和自动范围。这种系统在剪切主导的流体流中经常遇到,在剪切主导的流体流中,非正常性在障碍的生长中起着重要作用。为了解决这些问题,我们采用来自活跃子空间的想法来查找模型减少的坐标的低维系统,以平衡伴随的信息,以了解该系统的敏感性与沿轨迹的状态方差的敏感性。所得的方法是使用伴随快照(Cobras)称为协方差平衡降低,与平衡截断与状态和基于伴随的梯度协方差矩阵取代了系统gramians并遵守相同的关键转换定律。在这里,提取的坐标与可用于构建彼得罗夫 - 盖尔金还原模型的倾斜投影相关。我们提供了一种有效的基于快照的计算方法,类似于平衡的正交分解。这也导致观察到,可以单独依靠状态和梯度样品的内部产品来计算还原的坐标,从而使我们能够通过用核函数替换内部产品来找到丰富的非线性坐标。在这些坐标中,可以使用回归来学习减少的模型。我们演示了这些技术,并与简单但具有挑战性的三维系统和轴对称喷气流仿真进行比较,并具有$ 10^5 $状态变量。
translated by 谷歌翻译
本文介绍了在高斯过程回归/克里格替代建模技术中选择/设计内核的算法。我们在临时功能空间中采用内核方法解决方案的设置,即繁殖内核希尔伯特空间(RKHS),以解决在观察到它的观察值的情况下近似定期目标函数的问题,即监督学习。第一类算法是内核流,该算法是在机器学习中的分类中引入的。它可以看作是一个交叉验证过程,因此选择了“最佳”内核,从而最小化了通过删除数据集的某些部分(通常为一半)而产生的准确性损失。第二类算法称为光谱内核脊回归,旨在选择“最佳”核,以便在相关的RKHS中,要近似的函数的范围很小。在Mercer定理框架内,我们就目标函数的主要特征来获得该“最佳”内核的明确结构。从数据中学习内核的两种方法均通过有关合成测试功能的数值示例,以及在湍流建模验证二维机翼的湍流模型验证中的经典测试用例。
translated by 谷歌翻译
计算科学和统计推断中的许多应用都需要计算有关具有未知归一化常数的复杂高维分布以及这些常数的估计。在这里,我们开发了一种基于从简单的基本分布生成样品,沿着速度场生成的流量运输的方法,并沿这些流程线执行平均值。这种非平衡重要性采样(NEIS)策略是直接实施的,可用于具有任意目标分布的计算。在理论方面,我们讨论了如何将速度场定制到目标,并建立所提出的估计器是一个完美的估计器,具有零变化。我们还通过将基本分布映射到目标上,通过传输图绘制了NEIS和方法之间的连接。在计算方面,我们展示了如何使用深度学习来代表神经网络,并将其训练为零方差最佳。这些结果在高维示例上进行了数值说明,我们表明训练速度场可以将NEIS估计量的方差降低至6个数量级,而不是Vanilla估计量。我们还表明,NEIS在这些示例上的表现要比NEAL的退火重要性采样(AIS)更好。
translated by 谷歌翻译
我们介绍了一种算法,用于计算采样歧管的测量测量算法,其依赖于对采样数据的植物嵌入的曲线图的模拟。我们的方法利用经典的结果在半导体分析和量子古典对应中,并形成用于学习数据集的歧管的技术的基础,随后用于高维数据集的非线性维度降低。我们以基于CoVID-19移动数据的聚类演示,从模型歧管中采样数据采样的数据,并通过集群演示来说明新的算法。最后,我们的方法揭示了数据采样和量化提供的离散化之间有趣的连接。
translated by 谷歌翻译
我们为生成对抗网络(GAN)提出了一个新颖的理论框架。我们揭示了先前分析的基本缺陷,通过错误地对GANS的训练计划进行了错误的建模,该缺陷受到定义不定的鉴别梯度的约束。我们克服了这个问题,该问题阻碍了对GAN培训的原则研究,并考虑了歧视者的体系结构在我们的框架内解决它。为此,我们通过其神经切线核为歧视者提供了无限宽度神经网络的理论。我们表征了训练有素的判别器,以实现广泛的损失,并建立网络的一般可怜性属性。由此,我们获得了有关生成分布的融合的新见解,从而促进了我们对GANS训练动态的理解。我们通过基于我们的框架的分析工具包来证实这些结果,并揭示了与GAN实践一致的直觉。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译