We study the algorithm configuration (AC) problem, in which one seeks to find an optimal parameter configuration of a given target algorithm in an automated way. Recently, there has been significant progress in designing AC approaches that satisfy strong theoretical guarantees. However, a significant gap still remains between the practical performance of these approaches and state-of-the-art heuristic methods. To this end, we introduce AC-Band, a general approach for the AC problem based on multi-armed bandits that provides theoretical guarantees while exhibiting strong practical performance. We show that AC-Band requires significantly less computation time than other AC approaches providing theoretical guarantees while still yielding high-quality configurations.
translated by 谷歌翻译
算法配置(AC)与对参数化算法最合适的参数配置的自动搜索有关。目前,文献中提出了各种各样的交流问题变体和方法。现有评论没有考虑到AC问题的所有衍生物,也没有提供完整的分类计划。为此,我们引入分类法以分别描述配置方法的交流问题和特征。我们回顾了分类法的镜头中现有的AC文献,概述相关的配置方法的设计选择,对比方法和问题变体相互对立,并描述行业中的AC状态。最后,我们的评论为研究人员和从业人员提供了AC领域的未来研究方向。
translated by 谷歌翻译
Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select configurations, we focus on speeding up random search through adaptive resource allocation and early-stopping. We formulate hyperparameter optimization as a pure-exploration nonstochastic infinite-armed bandit problem where a predefined resource like iterations, data samples, or features is allocated to randomly sampled configurations. We introduce a novel algorithm, Hyperband, for this framework and analyze its theoretical properties, providing several desirable guarantees. Furthermore, we compare Hyperband with popular Bayesian optimization methods on a suite of hyperparameter optimization problems. We observe that Hyperband can provide over an order-of-magnitude speedup over our competitor set on a variety of deep-learning and kernel-based learning problems.
translated by 谷歌翻译
Data depth, introduced by Tukey (1975), is an important tool in data science, robust statistics, and computational geometry. One chief barrier to its broader practical utility is that many common measures of depth are computationally intensive, requiring on the order of $n^d$ operations to exactly compute the depth of a single point within a data set of $n$ points in $d$-dimensional space. Often however, we are not directly interested in the absolute depths of the points, but rather in their \textit{relative ordering}. For example, we may want to find the most central point in a data set (a generalized median), or to identify and remove all outliers (points on the fringe of the data set with low depth). With this observation, we develop a novel and instance-adaptive algorithm for adaptive data depth computation by reducing the problem of exactly computing $n$ depths to an $n$-armed stochastic multi-armed bandit problem which we can efficiently solve. We focus our exposition on simplicial depth, developed by \citet{liu1990notion}, which has emerged as a promising notion of depth due to its interpretability and asymptotic properties. We provide general instance-dependent theoretical guarantees for our proposed algorithms, which readily extend to many other common measures of data depth including majority depth, Oja depth, and likelihood depth. When specialized to the case where the gaps in the data follow a power law distribution with parameter $\alpha<2$, we show that we can reduce the complexity of identifying the deepest point in the data set (the simplicial median) from $O(n^d)$ to $\tilde{O}(n^{d-(d-1)\alpha/2})$, where $\tilde{O}$ suppresses logarithmic factors. We corroborate our theoretical results with numerical experiments on synthetic data, showing the practical utility of our proposed methods.
translated by 谷歌翻译
我们考虑了一种有可能无限的武器的随机强盗问题。我们为最佳武器和$ \ delta $的比例写入$ p ^ * $,以获得最佳和次优臂之间的最小含义 - 均值差距。我们在累积遗憾设置中表征了最佳学习率,以及在问题参数$ t $(预算),$ p ^ * $和$ \ delta $的最佳臂识别环境中。为了最大限度地减少累积遗憾,我们提供了订单$ \ OMEGA(\ log(t)/(p ^ * \ delta))$的下限和UCB样式算法,其匹配上限为一个因子$ \ log(1 / \ delta)$。我们的算法需要$ p ^ * $来校准其参数,我们证明了这种知识是必要的,因为在这个设置中调整到$ p ^ * $以来,因此是不可能的。为了获得最佳武器识别,我们还提供了订单$ \ Omega(\ exp(-ct \ delta ^ 2 p ^))的较低限制,以上输出次优臂的概率,其中$ c> 0 $是一个绝对常数。我们还提供了一个消除算法,其上限匹配下限到指数中的订单$ \ log(t)$倍数,并且不需要$ p ^ * $或$ \ delta $ as参数。我们的结果直接适用于竞争$ j $ -th最佳手臂的三个相关问题,识别$ \ epsilon $良好的手臂,并找到一个平均值大于已知订单的大分的手臂。
translated by 谷歌翻译
我们考虑具有未知实用程序参数的多项式logit模型(MNL)下的动态分类优化问题。本文研究的主要问题是$ \ varepsilon $ - 污染模型下的模型错误指定,该模型是强大统计和机器学习中的基本模型。特别是,在整个长度$ t $的销售范围内,我们假设客户根据$(1- \ varepsilon)$ - 时间段的$(1- \ varepsilon)的基础多项式logit选择模型进行购买,并进行任意购买取而代之的是在剩余的$ \ varepsilon $ - 分数中的决策。在此模型中,我们通过主动淘汰策略制定了新的强大在线分类优化政策。我们对遗憾建立上限和下界,并表明当分类能力恒定时,我们的政策是$ t $的最佳对数因素。分类能力具有恒定的上限。我们进一步制定了一种完全自适应策略,该政策不需要任何先验知识,即污染参数$ \ varepsilon $。如果存在最佳和亚最佳产品之间存在的亚临时差距,我们还建立了依赖差距的对数遗憾上限和已知的 - $ \ VAREPSILON $和UNKNOWER-$ \ \ VAREPSILON $案例。我们的仿真研究表明,我们的政策表现优于基于上置信度范围(UCB)和汤普森采样的现有政策。
translated by 谷歌翻译
我们研究固定预算设置中线性匪徒中最佳手臂识别的问题。通过利用G-Optimal设计的属性并将其纳入ARM分配规则,我们设计了一种无参数算法,基于最佳设计的基于设计的线性最佳臂识别(OD-Linbai)。我们提供了OD-Linbai的失败概率的理论分析。 OD-Linbai的性能并非所有最优差距,而是取决于顶部$ d $臂的差距,其中$ d $是线性匪徒实例的有效维度。补充,我们为此问题提供了一个Minimax下限。上限和下限表明,OD-Linbai是最佳的最佳选择,直到指数中的恒定乘法因素,这是对现有方法的显着改进(例如,贝耶斯加普,和平,线性化和GSE),并解决了确定确定该问题的问题。在固定预算设置中学习最好的手臂的困难。最后,数值实验表明,对各种真实和合成数据集的现有算法进行了相当大的经验改进。
translated by 谷歌翻译
在本文中,我们介绍了一个多武装的强盗问题被称为MAX-MIN分组的匪徒,其中臂在可能重叠的群体中排列,并且目标是找到最糟糕的均值奖励的组。此问题对推荐系统等应用感兴趣,并且与广泛研究的鲁棒优化问题也密切相关。我们呈现了两种基于算法的连续消除和稳健的优化,并导出了样本数量的上限,以保证找到最大最佳或近最佳组,以及算法无关的下限。我们讨论了各种兴趣案件中我们界的紧绷程度,以及衍生均匀紧张的界限。
translated by 谷歌翻译
通过新兴应用程序,如现场媒体电子商务,促销和建议,我们介绍和解决了一般的非静止多武装强盗问题,具有以下两个特征:(i)决策者可以拉动和收集每次期间,从最多$ k \,(\ ge 1)美元的奖励; (ii)手臂拉动后的预期奖励立即下降,然后随着ARM空闲时间的增加,非参数恢复。目的是最大化预期累计奖励超过$ T $时间段,我们设计了一类“纯粹的周期性政策”,共同设置了拉动每个臂的时间。对于拟议的政策,我们证明了离线问题和在线问题的性能保证。对于脱机问题,当已知所有型号参数时,所提出的周期性策略获得1- \ Mathcal O(1 / \ Sqrt {k})$的近似率,当$ k $生长时是渐近的最佳状态到无穷远。对于在线问题时,当模型参数未知并且需要动态学习时,我们将脱机周期性策略与在线策略上的上部置信程序进行集成。拟议的在线策略被证明是对脱机基准的近似拥有$ \ widetilde {\ mathcal o}(n \ sqrt {t})。我们的框架和政策设计可能在更广泛的离线规划和在线学习应用程序中阐明,具有非静止和恢复奖励。
translated by 谷歌翻译
在臂分布的标准假设下广泛研究了随机多臂强盗问题(例如,用已知的支持,指数家庭等)。这些假设适用于许多现实世界问题,但有时他们需要知识(例如,在尾部上),从业者可能无法精确访问,提高强盗算法的鲁棒性的问题,以模拟拼盘。在本文中,我们研究了一种通用的Dirichlet采样(DS)算法,基于通过重新采样的武器观测和数​​据相关的探索奖励计算的经验指标的成对比较。我们表明,当该策略的界限和对数后悔具有轻度分量度条件的半界分布时,这种策略的不同变体达到了可证明的最佳遗憾。我们还表明,一项简单的调整在大类无界分布方面实现了坚固性,其成本比对数渐近的遗憾略差。我们终于提供了数字实验,展示了合成农业数据的决策问题中DS的优点。
translated by 谷歌翻译
Consider the following abstract coin tossing problem: Given a set of $n$ coins with unknown biases, find the most biased coin using a minimal number of coin tosses. This is a common abstraction of various exploration problems in theoretical computer science and machine learning and has been studied extensively over the years. In particular, algorithms with optimal sample complexity (number of coin tosses) have been known for this problem for quite some time. Motivated by applications to processing massive datasets, we study the space complexity of solving this problem with optimal number of coin tosses in the streaming model. In this model, the coins are arriving one by one and the algorithm is only allowed to store a limited number of coins at any point -- any coin not present in the memory is lost and can no longer be tossed or compared to arriving coins. Prior algorithms for the coin tossing problem with optimal sample complexity are based on iterative elimination of coins which inherently require storing all the coins, leading to memory-inefficient streaming algorithms. We remedy this state-of-affairs by presenting a series of improved streaming algorithms for this problem: we start with a simple algorithm which require storing only $O(\log{n})$ coins and then iteratively refine it further and further, leading to algorithms with $O(\log\log{(n)})$ memory, $O(\log^*{(n)})$ memory, and finally a one that only stores a single extra coin in memory -- the same exact space needed to just store the best coin throughout the stream. Furthermore, we extend our algorithms to the problem of finding the $k$ most biased coins as well as other exploration problems such as finding top-$k$ elements using noisy comparisons or finding an $\epsilon$-best arm in stochastic multi-armed bandits, and obtain efficient streaming algorithms for these problems.
translated by 谷歌翻译
We study the best-arm identification problem in multi-armed bandits with stochastic, potentially private rewards, when the goal is to identify the arm with the highest quantile at a fixed, prescribed level. First, we propose a (non-private) successive elimination algorithm for strictly optimal best-arm identification, we show that our algorithm is $\delta$-PAC and we characterize its sample complexity. Further, we provide a lower bound on the expected number of pulls, showing that the proposed algorithm is essentially optimal up to logarithmic factors. Both upper and lower complexity bounds depend on a special definition of the associated suboptimality gap, designed in particular for the quantile bandit problem, as we show when the gap approaches zero, best-arm identification is impossible. Second, motivated by applications where the rewards are private, we provide a differentially private successive elimination algorithm whose sample complexity is finite even for distributions with infinite support-size, and we characterize its sample complexity. Our algorithms do not require prior knowledge of either the suboptimality gap or other statistical information related to the bandit problem at hand.
translated by 谷歌翻译
在强盗多个假设测试中,每个ARM对应于我们希望测试的不同NULL假设,并且目标是设计正确识别大型有趣的武器(真正发现)的自适应算法,同时仅错误地识别少数不感兴趣的武器(虚假的发现)。非强盗多测试中的一个常见度量是错误的发现速率(FDR)。我们为强盗FDR控制提出了一个统一的模块化框架,强调了探索和证据总结的解耦。我们利用了强大的鞅的“e-processage”概念,以确保在通用问题设置中进行任意复合空无效,探索规则和停止时间的FDR控制。特别地,即使臂的奖励分布可能是相关的,有效的FDR控制也可以依赖,可以同时查询多个臂,并且多个(协作或竞争)代理可以是查询臂,也可以是覆盖组合半强盗类型设置。在每次步骤中,每次ARM奖励分配是独立的,并且在每个步骤都会审议了每个ARM奖励分配的环境。我们的框架在这​​个特殊情况下恢复了匹配的样本复杂性保证,在实践中表现相对或更好。对于其他设置,示例复杂性将取决于问题的更精细的细节(正在测试的复合空,探索算法,数据依赖结构,停止规则),我们不会探索这些;我们的贡献是表明FDR保证对这些细节进行了干净,完全不可知。
translated by 谷歌翻译
积极的学习方法在减少学习所需的样本数量方面表现出了巨大的希望。随着自动化学习系统被采用到实时的现实世界决策管道中,越来越重要的是,这种算法的设计考虑到了安全性。在这项工作中,我们研究了在互动环境中学习最佳安全决定的复杂性。我们将这个问题减少到约束的线性匪徒问题,我们的目标是找到满足某些(未知)安全限制的最佳手臂。我们提出了一种基于自适应的实验性设计算法,在显示ARM的难度与次优的难度之间,我们表现出了有效的交易。据我们所知,我们的结果是具有安全限制的线性匪徒最佳武器识别。实际上,我们证明了这种方法在合成和现实世界数据集上的表现很好。
translated by 谷歌翻译
我们研究了一个顺序决策问题,其中学习者面临$ k $武装的随机匪徒任务的顺序。对手可能会设计任务,但是对手受到限制,以在$ m $ and的较小(但未知)子集中选择每个任务的最佳组。任务边界可能是已知的(强盗元学习设置)或未知(非平稳的强盗设置)。我们设计了一种基于Burnit subsodular最大化的减少的算法,并表明,在大量任务和少数最佳武器的制度中,它在两种情况下的遗憾都比$ \ tilde {o}的简单基线要小。 \ sqrt {knt})$可以通过使用为非平稳匪徒问题设计的标准算法获得。对于固定任务长度$ \ tau $的强盗元学习问题,我们证明该算法的遗憾被限制为$ \ tilde {o}(nm \ sqrt {m \ tau}+n^{2/3} m \ tau)$。在每个任务中最佳武器的可识别性的其他假设下,我们显示了一个带有改进的$ \ tilde {o}(n \ sqrt {m \ tau}+n^{1/2} {1/2} \ sqrt的强盗元学习算法{m k \ tau})$遗憾。
translated by 谷歌翻译
推荐系统正面临审查,因为它们对我们可以获得的机会的影响越来越大。目前对公平的审计仅限于敏感群体水平的粗粒度评估。我们建议审核嫉妒 - 狂喜,一个与个别偏好对齐的更精细的标准:每个用户都应该更喜欢他们的建议给其他用户的建议。由于审计要求估计用户超出现有建议的用户的偏好,因此我们将审计作为多武装匪徒的新纯粹探索问题。我们提出了一种采样的效率算法,具有理论上的保证,它不会恶化用户体验。我们还研究了现实世界推荐数据集实现的权衡。
translated by 谷歌翻译
我们以已知的奖励和未知的约束来研究顺序决策,这是由约束代表昂贵评估人类偏好(例如安全舒适的驾驶行为)的情况所激发的。我们将互动学习这些约束作为新的线性匪徒问题的挑战正式化,我们称之为约束的线性最佳臂识别。为了解决这个问题,我们提出了自适应约束学习(ACOL)算法。我们为约束线性最佳臂识别提供了一个依赖实例的下限,并表明Acol的样品复杂性与最坏情况下的下限匹配。在平均情况下,ACOL的样品复杂性结合仍然比简单方法的边界更紧密。在合成实验中,ACOL与Oracle溶液相同,并且表现优于一系列基准。作为应用程序,我们考虑学习限制,以代表驾驶模拟中的人类偏好。对于此应用,ACOL比替代方案要高得多。此外,我们发现学习偏好作为约束对驾驶场景的变化比直接编码奖励函数中的偏好更强大。
translated by 谷歌翻译
带背包(BWK)的匪徒是供应/预算约束下的多武装匪徒的一般模型。虽然BWK的最坏情况遗憾的遗憾是良好的理解,但我们提出了三种结果,超出了最坏情况的观点。首先,我们提供上下界限,其数量为对数,实例相关的后悔率的完整表征。其次,我们考虑BWK中的“简单遗憾”,在给定回合追踪算法的性能,并证明它在除了几轮之外的一切。第三,我们提供从BWK到匪徒的一般“减少”,这利用了一些已知的有用结构,并将这种减少应用于组合半刺点,线性上下文匪徒和多项式登录匪徒。我们的成果从\ CiteT {AgraWaldevanur-EC14}的BWK算法构建,提供了新的分析。
translated by 谷歌翻译
我们研究Stackelberg游戏,其中一位校长反复与长寿,非洋流代理商进行互动,而不知道代理商的回报功能。尽管当代理商是近视,非侧心代理会带来额外的并发症时,在Stackelberg游戏中的学习是充分理解的。尤其是,非洋流代理可以从战略上选择当前劣等的行动,以误导校长的学习算法并在未来获得更好的结果。我们提供了一个通用框架,该框架可在存在近视剂的情况下降低非洋白酶的学习来优化强大的匪徒。通过设计和分析微型反应性匪徒算法,我们的还原从校长学习算法的统计效率中进行了差异,以与其在诱导接近最佳的响应中的有效性。我们将此框架应用于Stackelberg Security Games(SSG),需求曲线,战略分类和一般有限的Stackelberg游戏的价格。在每种情况下,我们都表征了近最佳响应中存在的错误的类型和影响,并为此类拼写错误开发了一种鲁棒性的学习算法。在此过程中,我们通过最先进的$ O(n^3)$从SSGS中提高了SSG中的学习复杂性,从通过发现此类游戏的基本结构属性。该结果除了对非洋流药物学习之外,还具有独立的兴趣。
translated by 谷歌翻译
我们研究了$ k $武装的决斗匪徒问题,这是传统的多武器匪徒问题的一种变体,其中以成对比较的形式获得了反馈。以前的学习算法专注于$ \ textit {完全自适应} $设置,在每次比较后,算法可以进行更新。 “批处理”决斗匪徒问题是由Web搜索排名和推荐系统等大规模应用程序激励的,在这种应用程序中执行顺序更新可能是不可行的。在这项工作中,我们要问:$ \ textit {是否只使用几个自适应回合有解决方案,该回合与$ k $ armed的决斗匪徒的最佳顺序算法的渐近后悔界限?} $? \ textit {在condorcet条件下} $,这是$ k $武装的决斗匪徒问题的标准设置。我们获得$ O(k^2 \ log^2(k)) + O(k \ log(t))$的渐近遗憾地平线。我们的遗憾界限几乎与在Condorcet条件下完全顺序环境中已知的最佳后悔界限相匹配。最后,在各种现实世界数据集的计算实验中,我们观察到使用$ o(\ log(t))$ rounds的算法与完全顺序的算法(使用$ t $ rounds)的性能几乎相同。
translated by 谷歌翻译