我们提出了一种基于体积的基于网格的算法,用于参数化胎盘到扁平模板,以实现局部解剖结构和功能的有效可视化。 MRI显示潜在作为研究工具,因为它提供与胎盘功能直接相关的信号。然而,由于胎盘体内形状的弯曲和高度变化,解释和可视化这些图像是困难的。我们通过绘制胎盘来解决解释挑战,以便它类似于熟悉的离体形状。我们将参数化作为优化问题,用于将体积网格表示的胎盘形状映射到扁平模板。我们采用对称的Dirichlet Energy来控制整个体积的局部变形。在梯度下降优化期间,映射中的局部注射是由约束的线路搜索强制执行的。我们使用从大胆的MRI图像中提取的111个胎盘形状的研究研究验证了我们的方法。我们的映射在匹配模板时实现了子体素准确性,同时保持整个音量的低失真。我们展示了胎盘的扁平化程度如何改善解剖学和功能的可视化。我们的代码在https://github.com/mabulnaga/plentaa-flatteny自由提供。
translated by 谷歌翻译
动态MRI可以捕获具有高对比度的软组织器官中的时间解剖变化,但是获得的序列通常遭受有限的体积覆盖,这使得器官形状轨迹的高分辨率重建在时间研究中的主要挑战。由于腹部器官形状的变异性跨越时间和受试者,本研究的目的是朝向3D致密速度测量来完全覆盖整个表面并提取有意义的特征,其特征在于观察到的器官变形并实现临床作用或决定。我们在深呼吸运动期间提出了一种用于表征膀胱表面动力学的管道。对于紧凑的形状表示,首先使用重建的时间体积来使用LDDMM框架建立专用的动态4D网状序列。然后,我们从诸如网格伸长和失真的机械参数执行器官动力学的统计表征。由于我们将器官引用作为非平面,因此我们还使用平均曲率变化为度量来量化表面演变。然而,曲率的数值计算强烈地取决于表面参数化。为了应对这一依赖性,我们采用了一种用于表面变形分析的新方法。独立于参数化并最小化测地曲线的长度,通过最小化Dirichlet能量,它使表面曲线平滑地朝向球体。 eulerian PDE方法用于从曲线缩短流中导出形状描述符。使用Laplace Beltrami操作员特征函数来计算各个运动模式之间的接口,用于球形映射。用于提取用于局部控制的模拟形状轨迹的表征相关曲线的应用演示了所提出的形状描述符的稳定性。
translated by 谷歌翻译
在许多生物医学应用中,开放和闭合解剖表面的参数化具有基本的重要性。球形谐波,在单元球上定义的一组基函数,广泛用于解剖结构描述。然而,在物体表面和整个单元球之间建立一对一的对应关系可以引起大的几何失真,以便表面的形状与完美球体过于不同。在这项工作中,我们提出了具有简单连接的打开和闭合表面的自适应区域保护的参数化方法,该封闭表面具有参数化为球形帽。我们的方法优化参数域的形状以及从对象曲面到参数域的映射。物体表面将以面部保存的方式全局映射到单位球的最佳球形帽区域,同时也表现出低保形失真。我们进一步开发了一组在自适应球形帽结构域中定义的一组球形谐波的基本函数,我们称之为自适应谐波。实验结果表明,所提出的参数化方法在面积和角度失真方面优于开放和闭合解剖表面的现有方法。使用自适应参数化和自适应谐波的新颖组合可以有效地实现物体表面的表面描述。我们的作品提供了一种新颖的方式,可以提高准确性和更大的灵活性映射解剖结构。更广泛地,使用自适应参数域的想法允许易于处理各种生物医学形状。
translated by 谷歌翻译
统计形状建模(SSM)是一种有价值且强大的工具,可以生成复杂解剖结构的详细表示,该解剖结构可以实现定量分析和形状及其变化的比较。 SSM应用数学,统计和计算来将形状解析为定量表示(例如对应点或地标),这些表示将有助于回答有关整个人群解剖学变化的各种问题。复杂的解剖结构具有许多不同的部分,具有不同的相互作用或复杂的结构。例如,心脏是四腔解剖结构,腔室之间有几个共同的边界。对于在整个身体中充分灌注末端器官,必要的心脏腔室的协调和有效收缩是必要的。这些心脏共享边界内的细微形状变化可以表明潜在的病理变化,导致不协调的收缩和末端器官灌注不良。早期检测和稳健的量化可以洞悉理想的治疗技术和干预时机。但是,现有的SSM方法无法明确对共享边界的统计数据进行建模。本文提出了一种通用且灵活的数据驱动方法,用于构建具有共同边界的多器官解剖结构的统计形状模型,可捕获单个解剖学及其在整个人群中共享边界表面的形态和对齐变化。我们通过开发形状模型来证明使用双脑室心脏数据集的提议方法的有效性,从而在整个人群数据中始终如一地参数化心脏双脑室结构和介入的室内隔膜(共享边界表面)。
translated by 谷歌翻译
本文介绍了一组数字方法,用于在不变(弹性)二阶Sobolev指标的设置中对3D表面进行Riemannian形状分析。更具体地说,我们解决了代表为3D网格的参数化或未参数浸入式表面之间的测量学和地球距离的计算。在此基础上,我们为表面集的统计形状分析开发了工具,包括用于估算Karcher均值并在形状群体上执行切线PCA的方法,以及计算沿表面路径的平行传输。我们提出的方法从根本上依赖于通过使用Varifold Fidelity术语来为地球匹配问题提供轻松的变异配方,这使我们能够在计算未参数化表面之间的地理位置时强制执行重新训练的独立性,同时还可以使我们能够与多用途算法相比,使我们能够将表面与vare表面进行比较。采样或网状结构。重要的是,我们演示了如何扩展放松的变分框架以解决部分观察到的数据。在合成和真实的各种示例中,说明了我们的数值管道的不同好处。
translated by 谷歌翻译
新兴的元应用需要人类手的可靠,准确和逼真的复制品,以便在物理世界中进行复杂的操作。虽然真实的人手代表了骨骼,肌肉,肌腱和皮肤之间最复杂的协调之一,但最先进的技术一致专注于仅建模手的骨架。在本文中,我们提出了Nimble,这是一种新型的参数手模型,其中包括缺少的密钥组件,将3D手模型带入了新的现实主义水平。我们首先在最近的磁共振成像手(MRI手)数据集上注释肌肉,骨骼和皮肤,然后在数据集中的单个姿势和受试者上注册一个体积模板手。敏捷由20个骨头组成,作为三角形网格,7个肌肉群作为四面体网眼和一个皮肤网。通过迭代形状的注册和参数学习,它进一步产生形状的混合形状,姿势混合形状和关节回归器。我们证明将敏捷性应用于建模,渲染和视觉推理任务。通过强制执行内部骨骼和肌肉以符合解剖学和运动学规则,Nimble可以使3D手动画为前所未有的现实主义。为了建模皮肤的外观,我们进一步构建了一个光度法,以获取高质量的纹理和正常地图,以模型皱纹和棕榈印刷。最后,敏捷还通过合成丰富的数据或直接作为推理网络中的可区分层来使基于学习的手姿势和形状估计受益。
translated by 谷歌翻译
我们提出了一种针对非等级地标的非刚性形状匹配的原则方法。我们的方法基于功能地图框架,但我们没有促进异构体,而是集中在近乎符号的地图上,这些图可准确地保留地标。首先,我们通过使用固有的Dirichlet-Steklov本本特征来引入新颖的地标适应性基础来实现这一目标。其次,我们建立了在此基础上表达的保形图的功能分解。最后,我们制定了一种构成形式不变的能量,该能量促进了高质量的具有里程碑式的保留地图,并展示了如何通过我们扩展到设置的最近提出的Zoomout方法的变体来求解它。我们的方法是无描述符,有效且可靠的,可显着网格变异性。我们在一系列基准数据集上评估了我们的方法,并在非等法基准测试和等距范围内的最新性能上展示了最先进的性能。
translated by 谷歌翻译
血氧水平依赖性(BOLD)用母体高氧可以评估胎盘内的氧运输,并已成为研究胎盘功能的有前途的工具。测量信号随着时间的变化需要在时间序列的每个体积中分割胎盘。由于大胆的时间序列中的数量大量,现有研究依靠注册将所有卷映射到手动分段模板。由于胎盘由于胎儿运动,母体运动和收缩而导致大变形,因此这种方法通常会导致大量废弃体积,而注册方法失败。在这项工作中,我们提出了一个基于U-NET神经网络体系结构的机器学习模型,以自动以粗体MRI分割胎盘,并将其应用于时间序列中的每个卷。我们使用边界加权损失函数来准确捕获胎盘形状。我们的模型经过训练和测试,并在91位包含健康胎儿的受试者,胎儿生长限制的胎儿以及BMI高的母亲中进行了测试。当与地面真实标签匹配时,我们的骰子得分为0.83 +/- 0.04,并且我们的模型在粗体时间序列中可靠地分割量氧和高氧点的量。我们的代码和训练有素的模型可在https://github.com/mabulnaga/automatic-placenta-mentegation上获得。
translated by 谷歌翻译
通常,非刚性登记的问题是匹配在两个不同点拍摄的动态对象的两个不同扫描。这些扫描可以进行刚性动作和非刚性变形。由于模型的新部分可能进入视图,而其他部件在两个扫描之间堵塞,则重叠区域是两个扫描的子集。在最常规的设置中,没有给出先前的模板形状,并且没有可用的标记或显式特征点对应关系。因此,这种情况是局部匹配问题,其考虑了随后的扫描在具有大量重叠区域的情况下进行的扫描经历的假设[28]。本文在环境中寻址的问题是同时在环境中映射变形对象和本地化摄像机。
translated by 谷歌翻译
我们提出了Cortexode,这是一种用于皮质表面重建的深度学习框架。 Cortexode利用神经普通微分方程(ODE)通过学习差异流来使输入表面变形为目标形状。表面上的点的轨迹将其建模为ODE,其中其坐标的衍生物通过可学习的Lipschitz-Conluble变形网络进行了参数化。这为预防自身干扰提供了理论保证。 Cortexode可以集成到基于自动学习的管道上,该管道可在不到5秒钟内有效地重建皮质表面。该管道利用3D U-NET来预测大脑磁共振成像(MRI)扫描的白质分割,并进一步生成代表初始表面的签名距离函数。引入快速拓扑校正以确保对球体的同构。遵循等曲面提取步骤,对两个Cortexode模型进行了训练,以分别将初始表面变形为白质和曲面。在包括新生儿(25-45周),年轻人(22-36岁)和老年受试者(55-90岁)(55-90岁)(55-90岁)的各个年龄段的大规模神经图像数据集上对拟议的管道进行评估。我们的实验表明,与常规处理管道相比,基于Cortexode的管道可以达到平均几何误差的平均几何误差小于0.2mm的平均几何误差。
translated by 谷歌翻译
晚期钆增强磁共振成像(LGE MRI)通常用于可视化和量化左心房(LA)疤痕。疤痕的位置和程度提供了心理生理学和心房颤动进展的重要信息(AF)。因此,LGE MRI的La Scar分段和量化可用于AF患者的计算机辅助诊断和治疗分层。由于手动描绘可能是耗时的,并且经过专家内和专家间变异性,因此非常需要自动化这种计算,这然而仍然仍然具有挑战性和研究。本文旨在为La腔,墙壁,瘢痕和消融差距分割和LGE MRI的定量提供系统审查,以及AF研究的相关文献。具体而言,我们首先总结AF相关的成像技术,特别是LGE MRI。然后,我们详细介绍了四个计算任务的方法,并总结了每个任务中应用的验证策略。最后,概述了未来可能的未来发展,简要调查了上述方法的潜在临床应用。审查表明,该主题的研究仍处于早期阶段。虽然已经提出了几种方法,但特别是对于LA分割,由于与图像采集的高度变化相关的性能问题和图像采集差异有关的性能问题,仍有很大的算法发展。
translated by 谷歌翻译
基于治疗期间的单投影图像的器官形状重建具有广泛的临床范围,例如在图像引导放射治疗和手术指导中。我们提出了一种图形卷积网络,该网络实现了用于单视点2D投影图像的3D器官网格的可变形登记。该框架使得能够同时训练两种类型的变换:从2D投影图像到位移图,以及从采样的每周顶点特征到满足网格结构的几何约束的3D位移。假设申请放射治疗,验证了2D / 3D可变形的登记性能,用于尚未瞄准迄今为止,即肝脏,胃,十二指肠和肾脏以及胰腺癌的多个腹部器官。实验结果表明,考虑多个器官之间的关系的形状预测可用于预测临床上可接受的准确性的数字重建射线照片的呼吸运动和变形。
translated by 谷歌翻译
近年来,由于其在数字人物,角色产生和动画中的广泛应用,人们对3D人脸建模的兴趣越来越大。现有方法压倒性地强调了对面部的外部形状,质地和皮肤特性建模,而忽略了内部骨骼结构和外观之间的固有相关性。在本文中,我们使用学习的参数面部发电机提出了雕塑家,具有骨骼一致性的3D面部创作,旨在通过混合参数形态表示轻松地创建解剖上正确和视觉上令人信服的面部模型。雕塑家的核心是露西(Lucy),这是与整形外科医生合作的第一个大型形状面部脸部数据集。我们的Lucy数据集以最古老的人类祖先之一的化石命名,其中包含正牙手术前后全人头的高质量计算机断层扫描(CT)扫描,这对于评估手术结果至关重要。露西(Lucy)由144次扫描,分别对72名受试者(31名男性和41名女性)组成,其中每个受试者进行了两次CT扫描,并在恐惧后手术中进行了两次CT扫描。根据我们的Lucy数据集,我们学习了一个新颖的骨骼一致的参数面部发电机雕塑家,它可以创建独特而细微的面部特征,以帮助定义角色,同时保持生理声音。我们的雕塑家通过将3D脸的描绘成形状混合形状,姿势混合形状和面部表达混合形状,共同在统一数据驱动的框架下共同建模头骨,面部几何形状和面部外观。与现有方法相比,雕塑家在面部生成任务中保留了解剖学正确性和视觉现实主义。最后,我们展示了雕塑家在以前看不见的各种花式应用中的鲁棒性和有效性。
translated by 谷歌翻译
We present VoxelMorph, a fast learning-based framework for deformable, pairwise medical image registration. Traditional registration methods optimize an objective function for each pair of images, which can be time-consuming for large datasets or rich deformation models. In contrast to this approach, and building on recent learning-based methods, we formulate registration as a function that maps an input image pair to a deformation field that aligns these images. We parameterize the function via a convolutional neural network (CNN), and optimize the parameters of the neural network on a set of images. Given a new pair of scans, VoxelMorph rapidly computes a deformation field by directly evaluating the function. In this work, we explore two different training strategies. In the first (unsupervised) setting, we train the model to maximize standard image matching objective functions that are based on the image intensities. In the second setting, we leverage auxiliary segmentations available in the training data. We demonstrate that the unsupervised model's accuracy is comparable to state-of-the-art methods, while operating orders of magnitude faster. We also show that VoxelMorph trained with auxiliary data improves registration accuracy at test time, and evaluate the effect of training set size on registration. Our method promises to speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is freely available at http://voxelmorph.csail.mit.edu.
translated by 谷歌翻译
We present a neural technique for learning to select a local sub-region around a point which can be used for mesh parameterization. The motivation for our framework is driven by interactive workflows used for decaling, texturing, or painting on surfaces. Our key idea is to incorporate segmentation probabilities as weights of a classical parameterization method, implemented as a novel differentiable parameterization layer within a neural network framework. We train a segmentation network to select 3D regions that are parameterized into 2D and penalized by the resulting distortion, giving rise to segmentations which are distortion-aware. Following training, a user can use our system to interactively select a point on the mesh and obtain a large, meaningful region around the selection which induces a low-distortion parameterization. Our code and project page are currently available.
translated by 谷歌翻译
网状denoising是数字几何处理中的基本问题。它试图消除表面噪声,同时尽可能准确地保留表面固有信号。尽管传统的智慧是基于专门的先验来平稳表面的,但基于学习的方法在概括和自动化方面取得了巨大的成功。在这项工作中,我们对网格denoising的进步进行了全面的综述,其中包含传统的几何方法和最近的基于学习的方法。首先,要熟悉读者的denoising任务,我们总结了网格denoising中的四个常见问题。然后,我们提供了两种现有的脱氧方法的分类。此外,分别详细介绍和分析了三个重要类别,包括优化,过滤器和基于数据驱动的技术。说明了定性和定量比较,以证明最先进的去核方法的有效性。最后,指出未来工作的潜在方向来解决这些方法的共同问题。这项工作还建立了网格denoising基准测试,未来的研究人员将通过最先进的方法轻松方便地评估其方法。
translated by 谷歌翻译
即使在给定的物种中,单个大脑在解剖结构和功能组织中也有所不同。当试图从受试者组收集的神经影像数据中得出可概括的结论时,个体间的可变性是一个主要障碍。当前的共同注册程序依赖于有限的数据,从而导致非常粗糙的主体间比对。在这项工作中,我们提出了一种基于最佳运输的主体间比对的新方法,称为融合不平衡的Gromov Wasserstein(FUGW)。该方法根据其功能特征的相似性来对齐皮质表面,以响应各种刺激设置,同时惩罚了单个地形组织的大变形。我们证明了FUGW非常适合全脑车地标的对齐。不平衡的功能可以处理以下事实:功能区域的大小各不相同。我们的结果表明,FUGW的对准显着增加了独立功能数据的活动间相关性,并导致在组级别上更精确的映射。
translated by 谷歌翻译
虚拟网格是在线通信的未来。服装是一个人身份和自我表达的重要组成部分。然而,目前,在培训逼真的布置动画的远程介绍模型的必需分子和准确性中,目前无法使用注册衣服的地面真相数据。在这里,我们提出了一条端到端的管道,用于建造可驱动的服装代表。我们方法的核心是一种多视图图案的布跟踪算法,能够以高精度捕获变形。我们进一步依靠跟踪方法生产的高质量数据来构建服装头像:一件衣服的表达和完全驱动的几何模型。可以使用一组稀疏的视图来对所得模型进行动画,并产生高度逼真的重建,这些重建忠于驾驶信号。我们证明了管道对现实的虚拟电视应用程序的功效,在该应用程序中,从两种视图中重建了衣服,并且用户可以根据自己的意愿进行选择和交换服装设计。此外,当仅通过身体姿势驱动时,我们表现出一个具有挑战性的场景,我们可驾驶的服装Avatar能够生产出比最先进的面包质量明显更高的逼真的布几何形状。
translated by 谷歌翻译
在本文中,我们介绍了复杂的功能映射,它将功能映射框架扩展到表面上切线矢量字段之间的共形图。这些地图的一个关键属性是他们的方向意识。更具体地说,我们证明,与连锁两个歧管的功能空间的常规功能映射不同,我们的复杂功能图在面向的切片束之间建立了一个链路,从而允许切线矢量场的稳健和有效地传输。通过首先赋予和利用复杂的结构利用各个形状的切线束,所得到的操作变得自然导向,从而有利于横跨形状保持对应的取向和角度,而不依赖于描述符或额外的正则化。最后,也许更重要的是,我们演示了这些对象如何在功能映射框架内启动几个实际应用。我们表明功能映射及其复杂的对应物可以共同估算,以促进定向保存,规范的管道,前面遭受取向反转对称误差的误差。
translated by 谷歌翻译
在机器学习中调用多种假设需要了解歧管的几何形状和维度,理论决定了需要多少样本。但是,在应用程序数据中,采样可能不均匀,歧管属性是未知的,并且(可能)非纯化;这意味着社区必须适应本地结构。我们介绍了一种用于推断相似性内核提供数据的自适应邻域的算法。从本地保守的邻域(Gabriel)图开始,我们根据加权对应物进行迭代率稀疏。在每个步骤中,线性程序在全球范围内产生最小的社区,并且体积统计数据揭示了邻居离群值可能违反了歧管几何形状。我们将自适应邻域应用于非线性维度降低,地球计算和维度估计。与标准算法的比较,例如使用K-Nearest邻居,证明了它们的实用性。
translated by 谷歌翻译