我们提出了Cortexode,这是一种用于皮质表面重建的深度学习框架。 Cortexode利用神经普通微分方程(ODE)通过学习差异流来使输入表面变形为目标形状。表面上的点的轨迹将其建模为ODE,其中其坐标的衍生物通过可学习的Lipschitz-Conluble变形网络进行了参数化。这为预防自身干扰提供了理论保证。 Cortexode可以集成到基于自动学习的管道上,该管道可在不到5秒钟内有效地重建皮质表面。该管道利用3D U-NET来预测大脑磁共振成像(MRI)扫描的白质分割,并进一步生成代表初始表面的签名距离函数。引入快速拓扑校正以确保对球体的同构。遵循等曲面提取步骤,对两个Cortexode模型进行了训练,以分别将初始表面变形为白质和曲面。在包括新生儿(25-45周),年轻人(22-36岁)和老年受试者(55-90岁)(55-90岁)(55-90岁)的各个年龄段的大规模神经图像数据集上对拟议的管道进行评估。我们的实验表明,与常规处理管道相比,基于Cortexode的管道可以达到平均几何误差的平均几何误差小于0.2mm的平均几何误差。
translated by 谷歌翻译
传统上,使用漫长的图像处理技术(如FreeSurfer,Cat或civet)解决了磁共振成像的皮质表面重建问题。这些框架需要很长的时间来实时应用不可行,并且对于大规模研究而言是不可行的。最近,已经引入了监督的深度学习方法,以加快这项任务,从而将重建时间从小时到几秒钟。本文将最新的皮质流模型作为蓝图,提出了三个修改,以提高其与现有的表面分析工具的准确性和互操作性,同时又不牺牲其快速推理时间和较低的GPU记忆消耗。首先,我们采用更准确的ODE求解器来减少差异映射近似误差。其次,我们设计了一个例程来产生更平滑的模板网格,避免了由皮质流的基于凸形壳模板中尖锐边缘引起的网格伪像。最后,我们重新铸造表面预测为预测的白色表面的变形,从而导致白色和伴侣表面顶点之间的一对一映射。该映射对于许多现有的表面形态计量学的表面分析工具至关重要。我们将结果方法命名CorticalFlow $^{++} $。使用大规模数据集,我们证明了所提出的更改提供了更高的几何准确性和表面规律性,同时几乎保持了重建时间和GPU记忆要求几乎没有变化。
translated by 谷歌翻译
Implicit fields have been very effective to represent and learn 3D shapes accurately. Signed distance fields and occupancy fields are the preferred representations, both with well-studied properties, despite their restriction to closed surfaces. Several other variations and training principles have been proposed with the goal to represent all classes of shapes. In this paper, we develop a novel and yet fundamental representation by considering the unit vector field defined on 3D space: at each point in $\mathbb{R}^3$ the vector points to the closest point on the surface. We theoretically demonstrate that this vector field can be easily transformed to surface density by applying the vector field divergence. Unlike other standard representations, it directly encodes an important physical property of the surface, which is the surface normal. We further show the advantages of our vector field representation, specifically in learning general (open, closed, or multi-layered) surfaces as well as piecewise planar surfaces. We compare our method on several datasets including ShapeNet where the proposed new neural implicit field shows superior accuracy in representing any type of shape, outperforming other standard methods. The code will be released at https://github.com/edomel/ImplicitVF
translated by 谷歌翻译
图像注册广泛用于医学图像分析中,以提供两个图像之间的空间对应关系。最近提出了利用卷积神经网络(CNN)的基于学习的方法来解决图像注册问题。基于学习的方法往往比基于传统优化的方法快得多,但是从复杂的CNN方法中获得的准确性提高是适度的。在这里,我们介绍了一个新的基于深神经的图像注册框架,名为\ textbf {mirnf},该框架代表通过通过神经字段实现的连续函数的对应映射。 MIRNF输出的变形矢量或速度向量给定3D坐标为输入。为了确保映射是差异的,使用神经ODE求解器集成了MiRNF的速度矢量输出,以得出两个图像之间的对应关系。此外,我们提出了一个混合坐标采样器以及级联的体系结构,以实现高相似性映射性能和低距离变形场。我们对两个3D MR脑扫描数据集进行了实验,这表明我们提出的框架提供了最新的注册性能,同时保持了可比的优化时间。
translated by 谷歌翻译
我们介绍DMTET,深度3D条件生成模型,可以使用诸如粗体素的简单用户指南来合成高分辨率3D形状。它通过利用新型混合3D表示来结婚隐式和显式3D表示的优点。与当前隐含的方法相比,培训涉及符号距离值,DMTET直接针对重建的表面进行了优化,这使我们能够用更少的伪像来合成更精细的几何细节。与直接生成诸如网格之类的显式表示的深度3D生成模型不同,我们的模型可以合成具有任意拓扑的形状。 DMTET的核心包括可变形的四面体网格,其编码离散的符号距离函数和可分行的行进Tetrahedra层,其将隐式符号距离表示转换为显式谱图表示。这种组合允许使用在表面网格上明确定义的重建和对抗性损耗来联合优化表面几何形状和拓扑以及生成细分层次结构。我们的方法显着优于来自粗体素输入的条件形状合成的现有工作,培训在复杂的3D动物形状的数据集上。项目页面:https://nv-tlabs.github.io/dmtet/
translated by 谷歌翻译
从磁共振成像(MRI)数据(称为颅骨条状)中去除非脑信号是许多神经图像分析流的组成部分。尽管它们很丰富,但通常是针对具有特定采集特性的图像量身定制的,即近乎各向异性的分辨率和T1加权(T1W)MRI对比度,这些分辨率在研究环境中很普遍。结果,现有的工具倾向于适应其他图像类型,例如在诊所常见的快速旋转回声(FSE)MRI中获得的厚切片。尽管近年来基于学习的大脑提取方法已获得吸引力,但这些方法面临着类似的负担,因为它们仅对训练过程中看到的图像类型有效。为了在成像协议的景观中实现强大的颅骨缠身,我们引入了Synthstrip,这是一种快速,基于学习的脑萃取工具。通过利用解剖学分割来生成具有解剖学,强度分布和远远超过现实医学图像范围的完全合成训练数据集,Synthstrip学会了成功推广到各种真实获得的大脑图像,从而消除了使用训练数据的需求目标对比。我们证明了合成条的功效对受试者人群的各种图像采集和决议的功效,从新生儿到成人。我们显示出与流行的颅骨基线的准确性的实质性提高 - 所有这些基线都采用单个训练有素的模型。我们的方法和标记的评估数据可在https://w3id.org/synthstrip上获得。
translated by 谷歌翻译
动态MRI可以捕获具有高对比度的软组织器官中的时间解剖变化,但是获得的序列通常遭受有限的体积覆盖,这使得器官形状轨迹的高分辨率重建在时间研究中的主要挑战。由于腹部器官形状的变异性跨越时间和受试者,本研究的目的是朝向3D致密速度测量来完全覆盖整个表面并提取有意义的特征,其特征在于观察到的器官变形并实现临床作用或决定。我们在深呼吸运动期间提出了一种用于表征膀胱表面动力学的管道。对于紧凑的形状表示,首先使用重建的时间体积来使用LDDMM框架建立专用的动态4D网状序列。然后,我们从诸如网格伸长和失真的机械参数执行器官动力学的统计表征。由于我们将器官引用作为非平面,因此我们还使用平均曲率变化为度量来量化表面演变。然而,曲率的数值计算强烈地取决于表面参数化。为了应对这一依赖性,我们采用了一种用于表面变形分析的新方法。独立于参数化并最小化测地曲线的长度,通过最小化Dirichlet能量,它使表面曲线平滑地朝向球体。 eulerian PDE方法用于从曲线缩短流中导出形状描述符。使用Laplace Beltrami操作员特征函数来计算各个运动模式之间的接口,用于球形映射。用于提取用于局部控制的模拟形状轨迹的表征相关曲线的应用演示了所提出的形状描述符的稳定性。
translated by 谷歌翻译
近年来,由于其表达力和灵活性,神经隐式表示在3D重建中获得了普及。然而,神经隐式表示的隐式性质导致缓慢的推理时间并且需要仔细初始化。在本文中,我们重新审视经典且无处不在的点云表示,并使用泊松表面重建(PSR)的可分辨率配方引入可分化的点对网格层,其允许给予定向的GPU加速的指示灯的快速解决方案点云。可微分的PSR层允许我们通过隐式指示器字段有效地和分散地桥接与3D网格的显式3D点表示,从而实现诸如倒角距离的表面重建度量的端到端优化。因此,点和网格之间的这种二元性允许我们以面向点云表示形状,这是显式,轻量级和富有表现力的。与神经内隐式表示相比,我们的形状 - 点(SAP)模型更具可解释,轻量级,并通过一个级别加速推理时间。与其他显式表示相比,如点,补丁和网格,SA​​P产生拓扑无关的水密歧管表面。我们展示了SAP对无知点云和基于学习的重建的表面重建任务的有效性。
translated by 谷歌翻译
Intelligent mesh generation (IMG) refers to a technique to generate mesh by machine learning, which is a relatively new and promising research field. Within its short life span, IMG has greatly expanded the generalizability and practicality of mesh generation techniques and brought many breakthroughs and potential possibilities for mesh generation. However, there is a lack of surveys focusing on IMG methods covering recent works. In this paper, we are committed to a systematic and comprehensive survey describing the contemporary IMG landscape. Focusing on 110 preliminary IMG methods, we conducted an in-depth analysis and evaluation from multiple perspectives, including the core technique and application scope of the algorithm, agent learning goals, data types, targeting challenges, advantages and limitations. With the aim of literature collection and classification based on content extraction, we propose three different taxonomies from three views of key technique, output mesh unit element, and applicable input data types. Finally, we highlight some promising future research directions and challenges in IMG. To maximize the convenience of readers, a project page of IMG is provided at \url{https://github.com/xzb030/IMG_Survey}.
translated by 谷歌翻译
We present VoxelMorph, a fast learning-based framework for deformable, pairwise medical image registration. Traditional registration methods optimize an objective function for each pair of images, which can be time-consuming for large datasets or rich deformation models. In contrast to this approach, and building on recent learning-based methods, we formulate registration as a function that maps an input image pair to a deformation field that aligns these images. We parameterize the function via a convolutional neural network (CNN), and optimize the parameters of the neural network on a set of images. Given a new pair of scans, VoxelMorph rapidly computes a deformation field by directly evaluating the function. In this work, we explore two different training strategies. In the first (unsupervised) setting, we train the model to maximize standard image matching objective functions that are based on the image intensities. In the second setting, we leverage auxiliary segmentations available in the training data. We demonstrate that the unsupervised model's accuracy is comparable to state-of-the-art methods, while operating orders of magnitude faster. We also show that VoxelMorph trained with auxiliary data improves registration accuracy at test time, and evaluate the effect of training set size on registration. Our method promises to speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is freely available at http://voxelmorph.csail.mit.edu.
translated by 谷歌翻译
最近的工作建模3D开放表面培训深度神经网络以近似无符号距离字段(UDF)并隐含地代表形状。要将此表示转换为显式网格,它们要么使用计算上昂贵的方法来对表面的致密点云采样啮合,或者通过将其膨胀到符号距离字段(SDF)中来扭曲表面。相比之下,我们建议直接将深度UDFS直接以延伸行进立方体的开放表面,通过本地检测表面交叉。我们的方法是幅度的序列,比啮合致密点云,比膨胀开口表面更准确。此外,我们使我们的表面提取可微分,并显示它可以帮助稀疏监控信号。
translated by 谷歌翻译
我们提出了一种新颖的隐式表示 - 神经半空间表示(NH-REP),以将歧管B-REP固体转换为隐式表示。 NH-REP是一棵布尔树木,建立在由神经网络代表的一组隐式函数上,复合布尔函数能够代表实体几何形状,同时保留锐利的特征。我们提出了一种有效的算法,以从歧管B-Rep固体中提取布尔树,并设计一种基于神经网络的优化方法来计算隐式函数。我们证明了我们的转换算法在一千个流形B-REP CAD模型上提供的高质量,这些模型包含包括NURB在内的各种弯曲斑块,以及我们学习方法优于其他代表性的隐性转换算法,在表面重建,尖锐的特征保存,尖锐的特征保存,尖锐的特征,,符号距离场的近似和对各种表面几何形状的鲁棒性以及由NH-REP支持的一组应用。
translated by 谷歌翻译
现有的数据驱动方法用于披上姿势的人体,尽管有效,但无法处理任意拓扑的服装,并且通常不是端到端的。为了解决这些局限性,我们提出了一条端到端可区分管道,该管道用隐式表面表示服装,并学习以铰接式身体模型的形状和姿势参数为条件的皮肤场。为了限制身体的插入和人工制品,我们提出了一种解释意识的训练数据的预处理策略和新颖的训练损失,在覆盖服装的同时惩罚了自身交流。我们证明,我们的方法可以针对最新方法产生更准确的结果和变形。此外,我们表明我们的方法凭借其端到端的可不同性,可以从图像观察中共同恢复身体和服装参数,这是以前的工作无法做到的。
translated by 谷歌翻译
从单视图重建3D形状是一个长期的研究问题。在本文中,我们展示了深度隐式地面网络,其可以通过预测底层符号距离场来从2D图像产生高质量的细节的3D网格。除了利用全局图像特征之外,禁止2D图像上的每个3D点的投影位置,并从图像特征映射中提取本地特征。结合全球和局部特征显着提高了符合距离场预测的准确性,特别是对于富含细节的区域。据我们所知,伪装是一种不断捕获从单视图图像中存在于3D形状中存在的孔和薄结构等细节的方法。 Disn在从合成和真实图像重建的各种形状类别上实现最先进的单视性重建性能。代码可在https://github.com/xharlie/disn提供补充可以在https://xharlie.github.io/images/neUrips_2019_Supp.pdf中找到补充
translated by 谷歌翻译
我们提出了一种基于体积的基于网格的算法,用于参数化胎盘到扁平模板,以实现局部解剖结构和功能的有效可视化。 MRI显示潜在作为研究工具,因为它提供与胎盘功能直接相关的信号。然而,由于胎盘体内形状的弯曲和高度变化,解释和可视化这些图像是困难的。我们通过绘制胎盘来解决解释挑战,以便它类似于熟悉的离体形状。我们将参数化作为优化问题,用于将体积网格表示的胎盘形状映射到扁平模板。我们采用对称的Dirichlet Energy来控制整个体积的局部变形。在梯度下降优化期间,映射中的局部注射是由约束的线路搜索强制执行的。我们使用从大胆的MRI图像中提取的111个胎盘形状的研究研究验证了我们的方法。我们的映射在匹配模板时实现了子体素准确性,同时保持整个音量的低失真。我们展示了胎盘的扁平化程度如何改善解剖学和功能的可视化。我们的代码在https://github.com/mabulnaga/plentaa-flatteny自由提供。
translated by 谷歌翻译
长期以来,众所周知,在从嘈杂或不完整数据中重建3D形状时,形状先验是有效的。当使用基于深度学习的形状表示时,这通常涉及学习潜在表示,可以以单个全局向量的形式或多个局部媒介。后者可以更灵活,但容易过度拟合。在本文中,我们主张一种与三个网眼相结合的混合方法,该方法在每个顶点处与单独的潜在向量。在训练过程中,潜在向量被限制为具有相同的值,从而避免过度拟合。为了推断,潜在向量是独立更新的,同时施加空间正规化约束。我们表明,这赋予了我们灵活性和概括功能,我们在几个医学图像处理任务上证明了这一点。
translated by 谷歌翻译
神经隐式功能的最新发展已在高质量的3D形状重建方面表现出巨大的成功。但是,大多数作品将空间分为形状的内部和外部,从而将其代表力量限制为单层和水密形状。这种局限性导致乏味的数据处理(将非紧密的原始数据转换为水密度),以及代表现实世界中一般对象形状的无能。在这项工作中,我们提出了一种新颖的方法来表示一般形状,包括具有多层表面的非水平形状和形状。我们介绍了3D形状(GIF)的一般隐式函数,该功能建模了每两个点之间的关系,而不是点和表面之间的关系。 GIF没有将3D空间分为预定义的内部区域,而是编码是否将两个点分开。 Shapenet上的实验表明,在重建质量,渲染效率和视觉保真度方面,GIF的表现优于先前的最先进方法。项目页面可从https://jianglongye.com/gifs获得。
translated by 谷歌翻译
个性化的3D血管模型对于心血管疾病患者的诊断,预后和治疗计划很有价值。传统上,这样的模型是用明确表示(例如网格和体素掩码)构建的,或隐式表示,例如径向基函数或原子(管状)形状。在这里,我们建议在可区分的隐式神经表示(INR)中以其签名距离函数(SDF)的零级集表示表面。这使我们能够用隐性,连续,轻巧且易于与深度学习算法集成的表示复杂的血管结构对复杂的血管结构进行建模。我们在这里通过三个实际示例证明了这种方法的潜力。首先,我们从CT图像中获得了腹主动脉瘤(AAA)的精确和水密表面,并显示出从表面上的200点出现的可靠拟合。其次,我们同时将嵌套的容器壁贴在一个没有交叉点的单个INR中。第三,我们展示了如何将3D模型的单个动脉模型平滑地混合到单个水密表面。我们的结果表明,INR是一种灵活的表示,具有微小互动注释和操纵复杂血管结构的潜力。
translated by 谷歌翻译
基于治疗期间的单投影图像的器官形状重建具有广泛的临床范围,例如在图像引导放射治疗和手术指导中。我们提出了一种图形卷积网络,该网络实现了用于单视点2D投影图像的3D器官网格的可变形登记。该框架使得能够同时训练两种类型的变换:从2D投影图像到位移图,以及从采样的每周顶点特征到满足网格结构的几何约束的3D位移。假设申请放射治疗,验证了2D / 3D可变形的登记性能,用于尚未瞄准迄今为止,即肝脏,胃,十二指肠和肾脏以及胰腺癌的多个腹部器官。实验结果表明,考虑多个器官之间的关系的形状预测可用于预测临床上可接受的准确性的数字重建射线照片的呼吸运动和变形。
translated by 谷歌翻译